Suppr超能文献

TrIP——基于物理偏差的变压器原子间势预测实际能量表面

TrIP─Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias.

作者信息

Hedelius Bryce E, Tingey Damon, Della Corte Dennis

机构信息

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States.

出版信息

J Chem Theory Comput. 2024 Jan 9;20(1):199-211. doi: 10.1021/acs.jctc.3c00936. Epub 2023 Dec 27.

Abstract

Accurate interatomic energies and forces enable high-quality molecular dynamics simulations, torsion scans, potential energy surface mappings, and geometry optimizations. Machine learning algorithms have enabled rapid estimates of the energies and forces with high accuracy. Further development of machine learning algorithms holds promise for producing universal potentials that support many different atomic species. We present the Transformer Interatomic Potential (TrIP): a chemically sound potential based on the SE(3)-Transformer. TrIP's species-agnostic architecture, which uses continuous atomic representation and homogeneous graph convolutions, encourages parameter sharing between atomic species for more general representations of chemical environments, maintains a reasonable number of parameters, serves as a form of regularization, and is a step toward accurate universal interatomic potentials. TrIP achieves state-of-the-art accuracies on the COMP6 benchmark with an energy prediction of just 1.02 kcal/mol MAE. We introduce physical bias in the form of Ziegler-Biersack-Littmark-screened nuclear repulsion and constrained atomization energies. An energy scan of a water molecule demonstrates that these changes improve long- and near-range interactions compared to other neural network potentials. TrIP also demonstrates stability in molecular dynamics simulations, demonstrating reasonable exploration of Ramachandran space.

摘要

精确的原子间能量和力能够实现高质量的分子动力学模拟、扭转扫描、势能面映射以及几何结构优化。机器学习算法能够快速且高精度地估计能量和力。机器学习算法的进一步发展有望产生支持多种不同原子种类的通用势能。我们提出了Transformer原子间势能(TrIP):一种基于SE(3)-Transformer的化学合理势能。TrIP的与物种无关的架构,使用连续原子表示和均匀图卷积,鼓励原子种类之间的参数共享,以更通用地表示化学环境,保持合理数量的参数,起到正则化的作用,并且是迈向精确通用原子间势能的一步。TrIP在COMP6基准测试中达到了当前的最佳精度,能量预测的平均绝对误差仅为1.02 kcal/mol。我们以齐格勒-比尔萨克-利特马克屏蔽核排斥和约束原子化能的形式引入物理偏差。对水分子的能量扫描表明,与其他神经网络势能相比,这些变化改善了长程和近程相互作用。TrIP在分子动力学模拟中也表现出稳定性,展示了对拉马钱德兰空间的合理探索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验