Thapelo Tsaone Swaabow, Mpoeleng Dimane, Hillhouse Gregory
Department of Computer Science and Information Systems, Botswana International University of Science and Technology, Palapye, Botswana.
Director (Ag.) Research Innovation Technology, Research Development and Innovation, Department of Computer Science and Information Systems, Botswana International University of Science and Technology, Palapye, Botswana.
MDM Policy Pract. 2023 Dec 26;8(2):23814683231218716. doi: 10.1177/23814683231218716. eCollection 2023 Jul-Dec.
Infectious diseases constitute a significant concern worldwide due to their increasing prevalence, associated health risks, and the socioeconomic costs. Machine learning (ML) models and epidemic models formulated using deterministic differential equations are the most dominant tools for analyzing and modeling the transmission of infectious diseases. However, ML models can be inconsistent in extracting the dynamics of a disease in the presence of data drifts. Likewise, the capability of epidemic models is constrained to parameter dimensions and estimation. We aimed at creating a framework of informed ML that integrates a random forest (RF) with an adapted susceptible infectious recovered (SIR) model to account for accuracy and consistency in stochasticity within the dynamics of coronavirus disease 2019 (COVID-19). An adapted SIR model was used to inform a default RF on predicting new COVID-19 cases (NCCs) at given intervals. We validated the performance of the informed RF (IRF) using real data. We used Botswana's pharmaceutical interventions (PIs) and non-PIs (NPIs) adopted between February 2020 and August 2022. The discrepancy between predictions and observations is modeled using loss functions, which are minimized, interpreted, and used to assess the IRF. The findings on the real data have revealed the effectiveness of the default RF in modeling and predicting NCCs. The use of the effective reproductive rate to inform the RF yielded an excellent predictive power (84%) compared with 75% by the default RF. This research has potential to inform policy and decision makers in developing systems to evaluate interventions for infectious diseases.
This framework is initiated by incorporating model outputs from an epidemic model to a machine learning model.An informed random forest (RF) is instantiated to model government and public responses to the COVID-19 pandemic.This framework does not require data transformations, and the epidemic model is shown to boost the RF's performance.This is a baseline knowledge-informed learning framework for assessing public health interventions in Botswana.
由于传染病的患病率不断上升、相关的健康风险以及社会经济成本,传染病成为全球范围内的一个重大问题。机器学习(ML)模型和使用确定性微分方程制定的流行模型是分析和建模传染病传播的最主要工具。然而,在存在数据漂移的情况下,ML模型在提取疾病动态方面可能不一致。同样,流行模型的能力也受到参数维度和估计的限制。我们旨在创建一个有信息的ML框架,将随机森林(RF)与适应性易感-感染-康复(SIR)模型相结合,以考虑2019冠状病毒病(COVID-19)动态中的随机性的准确性和一致性。一个适应性SIR模型被用来为默认的RF提供信息,以预测给定间隔内的新COVID-19病例(NCC)。我们使用真实数据验证了有信息的RF(IRF)的性能。我们使用了博茨瓦纳在2020年2月至2022年8月期间采取的药物干预措施(PIs)和非药物干预措施(NPIs)。预测和观察之间的差异使用损失函数进行建模,损失函数被最小化、解释并用于评估IRF。真实数据的研究结果揭示了默认RF在建模和预测NCC方面的有效性。使用有效繁殖率为RF提供信息产生了出色的预测能力(84%),而默认RF的预测能力为75%。这项研究有可能为政策和决策者提供信息,以开发评估传染病干预措施的系统。
这个框架是通过将流行模型的输出纳入机器学习模型而启动的。一个有信息的随机森林(RF)被实例化,以模拟政府和公众对COVID-19大流行的反应。这个框架不需要数据转换,并且流行模型被证明可以提高RF的性能。这是一个用于评估博茨瓦纳公共卫生干预措施的基于基线知识的学习框架。