Glatthaar Chantal, Wang Mengnan, Wagner Lysander Q, Breckwoldt Frederik, Guo Zhenyu, Zheng Kaitian, Kriechbaum Manfred, Amenitsch Heinz, Titirici Maria-Magdalena, Smarsly Bernd M
Institute of Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
Department of Chemical Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, U.K.
Chem Mater. 2023 Dec 6;35(24):10416-10433. doi: 10.1021/acs.chemmater.3c01520. eCollection 2023 Dec 26.
The demand for versatile and sustainable energy materials is on the rise, given the importance of developing novel clean technologies for transition to a net zero economy. Here, we present the synthesis, characterization, and application of lignin-derived ordered mesoporous carbons with various pore sizes (from 5 to approximately 50 nm) as anodes in sodium-ion batteries. We have varied the pore size using self-synthesized PEO--PHA block copolymers with different PEO and PHA chain lengths, applying the "soft templating" approach to introduce isolated spherical pores of 20 to 50 nm in diameters. The pore structure was evaluated by transmission electron microscopy (TEM), nitrogen physisorption, and small-angle X-ray scattering (SAXS). We report the microstructure analysis of such mesoporous lignin-based carbons using Raman spectroscopy and wide-angle X-ray scattering (WAXS). In comparison with nontemplated carbon and carbons templated employing commercial Pluronic F-127 and PIB--PEO, which created accessible channels and spherical pores up to approximately 10 nm in diameter, the carbon microstructure analysis revealed that templating with all applied polymers significantly impedes graphitization upon thermal treatment. Furthermore, the gained knowledge of similar carbon microstructures regardless of the type of template allowed the investigation of the influence of different pore morphologies in carbon applied as an anode material in sodium-ion batteries, supporting the previous theories in the literature that closed pores are beneficial for sodium storage while providing insights into the importance of pore size.
鉴于开发新型清洁技术以向净零经济转型的重要性,对多功能且可持续的能源材料的需求正在上升。在此,我们展示了具有各种孔径(从5到约50纳米)的木质素衍生有序介孔碳作为钠离子电池阳极的合成、表征及应用。我们使用具有不同PEO和PHA链长的自合成PEO - PHA嵌段共聚物来改变孔径,采用“软模板”方法引入直径为20至50纳米的孤立球形孔。通过透射电子显微镜(TEM)、氮气物理吸附和小角X射线散射(SAXS)对孔结构进行了评估。我们使用拉曼光谱和广角X射线散射(WAXS)报告了此类介孔木质素基碳的微观结构分析。与未使用模板的碳以及使用商业Pluronic F - 127和PIB - PEO作为模板制备的碳相比,后者形成了可达通道和直径达约10纳米的球形孔,碳微观结构分析表明,使用所有应用的聚合物进行模板化在热处理时会显著阻碍石墨化。此外,无论模板类型如何,对类似碳微观结构的了解使得能够研究不同孔形态对作为钠离子电池阳极材料的碳的影响,支持了文献中先前的理论,即封闭孔有利于钠存储,同时深入了解了孔径的重要性。