Broggi Giuseppe, Maniaci Antonino, Lentini Mario, Palicelli Andrea, Zanelli Magda, Zizzo Maurizio, Koufopoulos Nektarios, Salzano Serena, Mazzucchelli Manuel, Caltabiano Rosario
Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, 95123 Catania, Italy.
Department of Medicine and Surgery, University of Enna Kore, 94100 Enna, Italy.
Cancers (Basel). 2024 Oct 27;16(21):3623. doi: 10.3390/cancers16213623.
The present review discusses the transformative role of AI in the diagnosis and management of head and neck cancers (HNCs). It explores how AI technologies, including ML, DL, and CNNs, are applied in various diagnostic tasks, such as medical imaging, molecular profiling, and predictive modeling. This review highlights AI's ability to improve diagnostic accuracy and efficiency, particularly in analyzing medical images like CT, MRI, and PET scans, where AI sometimes outperforms human radiologists. This paper also emphasizes AI's application in histopathology, where algorithms assist in whole-slide image (WSI) analysis, tumor-infiltrating lymphocytes (TILs) quantification, and tumor segmentation. AI shows promise in identifying subtle or rare histopathological patterns and enhancing the precision of tumor grading and treatment planning. Furthermore, the integration of AI with molecular and genomic data aids in mutation analysis, prognosis, and personalized treatment strategies. Despite these advancements, the review identifies challenges in AI adoption, such as data standardization and model interpretability, and calls for further research to fully integrate AI into clinical practice for improved patient outcomes.
本综述讨论了人工智能在头颈癌(HNCs)诊断和管理中的变革性作用。它探讨了包括机器学习(ML)、深度学习(DL)和卷积神经网络(CNNs)在内的人工智能技术如何应用于各种诊断任务,如医学成像、分子谱分析和预测建模。本综述强调了人工智能提高诊断准确性和效率的能力,特别是在分析CT、MRI和PET扫描等医学图像方面,在这些方面人工智能有时比人类放射科医生表现更出色。本文还强调了人工智能在组织病理学中的应用,其中算法有助于全切片图像(WSI)分析、肿瘤浸润淋巴细胞(TILs)定量和肿瘤分割。人工智能在识别细微或罕见的组织病理学模式以及提高肿瘤分级和治疗计划的精度方面显示出前景。此外,人工智能与分子和基因组数据的整合有助于突变分析、预后和个性化治疗策略。尽管有这些进展,该综述确定了人工智能应用中的挑战,如数据标准化和模型可解释性,并呼吁进行进一步研究,以将人工智能全面整合到临床实践中,以改善患者预后。
Cureus. 2024-10-29
Diagn Pathol. 2024-2-22
Cancers (Basel). 2025-5-31
Otolaryngol Clin North Am. 2024-10