Suppr超能文献

基于 GAN 的医学图像小区域伪造检测的两阶段级联框架。

GAN-based medical image small region forgery detection via a two-stage cascade framework.

机构信息

Beijing Electronic Science and Technology Institute, Beijing, China.

University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America.

出版信息

PLoS One. 2024 Jan 2;19(1):e0290303. doi: 10.1371/journal.pone.0290303. eCollection 2024.

Abstract

Using generative adversarial network (GAN) Goodfellow et al. (2014) for data enhancement of medical images is significantly helpful for many computer-aided diagnosis (CAD) tasks. A new GAN-based automated tampering attack, like CT-GAN Mirsky et al. (2019), has emerged. It can inject or remove lung cancer lesions to CT scans. Because the tampering region may even account for less than 1% of the original image, even state-of-the-art methods are challenging to detect the traces of such tampering. This paper proposes a two-stage cascade framework to detect GAN-based medical image small region forgery like CT-GAN. In the local detection stage, we train the detector network with small sub-images so that interference information in authentic regions will not affect the detector. We use depthwise separable convolution and residual networks to prevent the detector from over-fitting and enhance the ability to find forged regions through the attention mechanism. The detection results of all sub-images in the same image will be combined into a heatmap. In the global classification stage, using gray-level co-occurrence matrix (GLCM) can better extract features of the heatmap. Because the shape and size of the tampered region are uncertain, we use hyperplanes in an infinite-dimensional space for classification. Our method can classify whether a CT image has been tampered and locate the tampered position. Sufficient experiments show that our method can achieve excellent performance than the state-of-the-art detection methods.

摘要

利用生成式对抗网络(GAN),Goodfellow 等人(2014 年)对医学图像进行数据增强,这对许多计算机辅助诊断(CAD)任务非常有帮助。一种新的基于 GAN 的自动化篡改攻击方法,如 CT-GAN Mirsky 等人(2019 年),已经出现。它可以在 CT 扫描中注入或删除肺癌病变。由于篡改区域甚至可能不到原始图像的 1%,即使是最先进的方法也难以检测到这种篡改的痕迹。本文提出了一种两阶段级联框架,用于检测基于 GAN 的医学图像小区域伪造,如 CT-GAN。在局部检测阶段,我们使用小的子图像来训练检测器网络,以便真实区域中的干扰信息不会影响检测器。我们使用深度可分离卷积和残差网络来防止检测器过度拟合,并通过注意力机制增强发现伪造区域的能力。同一图像中所有子图像的检测结果将组合成一个热图。在全局分类阶段,使用灰度共生矩阵(GLCM)可以更好地提取热图的特征。由于篡改区域的形状和大小不确定,我们使用无限维空间中的超平面进行分类。我们的方法可以分类 CT 图像是否被篡改,并定位篡改位置。充分的实验表明,我们的方法比最先进的检测方法具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/176d/10760893/773908f13b23/pone.0290303.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验