Suppr超能文献

自动检测 CT 图像中肺结节的算法的验证、比较和组合:LUNA16 挑战赛。

Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge.

机构信息

Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.

Department of Applied Science and Technology, Polytechnic University of Turin, Turin, Italy; Turin Section of Istituto Nazionale di Fisica Nucleare, Turin, Italy; Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Med Image Anal. 2017 Dec;42:1-13. doi: 10.1016/j.media.2017.06.015. Epub 2017 Jul 13.

Abstract

Automatic detection of pulmonary nodules in thoracic computed tomography (CT) scans has been an active area of research for the last two decades. However, there have only been few studies that provide a comparative performance evaluation of different systems on a common database. We have therefore set up the LUNA16 challenge, an objective evaluation framework for automatic nodule detection algorithms using the largest publicly available reference database of chest CT scans, the LIDC-IDRI data set. In LUNA16, participants develop their algorithm and upload their predictions on 888 CT scans in one of the two tracks: 1) the complete nodule detection track where a complete CAD system should be developed, or 2) the false positive reduction track where a provided set of nodule candidates should be classified. This paper describes the setup of LUNA16 and presents the results of the challenge so far. Moreover, the impact of combining individual systems on the detection performance was also investigated. It was observed that the leading solutions employed convolutional networks and used the provided set of nodule candidates. The combination of these solutions achieved an excellent sensitivity of over 95% at fewer than 1.0 false positives per scan. This highlights the potential of combining algorithms to improve the detection performance. Our observer study with four expert readers has shown that the best system detects nodules that were missed by expert readers who originally annotated the LIDC-IDRI data. We released this set of additional nodules for further development of CAD systems.

摘要

在过去的二十年中,自动检测胸部计算机断层扫描(CT)中的肺结节一直是一个活跃的研究领域。然而,只有少数研究在通用数据库上提供了不同系统的比较性能评估。因此,我们设立了 LUNA16 挑战赛,这是一个使用最大的胸部 CT 扫描公共参考数据库 LIDC-IDRI 数据集评估自动结节检测算法的客观评估框架。在 LUNA16 挑战赛中,参与者在两个轨道之一中开发其算法并上传其在 888 个 CT 扫描中的预测:1)完整的结节检测轨道,应开发完整的 CAD 系统;2)假阳性减少轨道,应分类提供的一组结节候选。本文描述了 LUNA16 的设置,并展示了迄今为止的挑战结果。此外,还研究了组合各个系统对检测性能的影响。结果表明,领先的解决方案采用了卷积网络并使用了提供的结节候选集。这些解决方案的组合在每个扫描不到 1.0 个假阳性的情况下实现了超过 95%的优异灵敏度。这突出了组合算法以提高检测性能的潜力。我们与四位专家读者进行的观察者研究表明,最佳系统检测到了最初注释 LIDC-IDRI 数据的专家读者错过的结节。我们发布了这组额外的结节,以供进一步开发 CAD 系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验