Suppr超能文献

结合熵、因果关系和图卷积网络模型的动态社交网络中的链接预测

Link Prediction in Dynamic Social Networks Combining Entropy, Causality, and a Graph Convolutional Network Model.

作者信息

Huang Xiaoli, Li Jingyu, Yuan Yumiao

机构信息

School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610000, China.

出版信息

Entropy (Basel). 2024 May 30;26(6):477. doi: 10.3390/e26060477.

Abstract

Link prediction is recognized as a crucial means to analyze dynamic social networks, revealing the principles of social relationship evolution. However, the complex topology and temporal evolution characteristics of dynamic social networks pose significant research challenges. This study introduces an innovative fusion framework that incorporates entropy, causality, and a GCN model, focusing specifically on link prediction in dynamic social networks. Firstly, the framework preprocesses the raw data, extracting and recording timestamp information between interactions. It then introduces the concept of "Temporal Information Entropy (TIE)", integrating it into the Node2Vec algorithm's random walk to generate initial feature vectors for nodes in the graph. A causality analysis model is subsequently applied for secondary processing of the generated feature vectors. Following this, an equal dataset is constructed by adjusting the ratio of positive and negative samples. Lastly, a dedicated GCN model is used for model training. Through extensive experimentation in multiple real social networks, the framework proposed in this study demonstrated a better performance than other methods in key evaluation indicators such as precision, recall, F1 score, and accuracy. This study provides a fresh perspective for understanding and predicting link dynamics in social networks and has significant practical value.

摘要

链接预测被认为是分析动态社交网络、揭示社会关系演变原理的关键手段。然而,动态社交网络复杂的拓扑结构和时间演化特征带来了重大的研究挑战。本研究引入了一种创新的融合框架,该框架结合了熵、因果关系和GCN模型,特别关注动态社交网络中的链接预测。首先,该框架对原始数据进行预处理,提取并记录交互之间的时间戳信息。然后引入“时间信息熵(TIE)”的概念,将其融入到Node2Vec算法的随机游走中,为图中的节点生成初始特征向量。随后应用因果分析模型对生成的特征向量进行二次处理。在此之后,通过调整正负样本的比例构建一个均衡的数据集。最后,使用一个专门的GCN模型进行模型训练。通过在多个真实社交网络中的广泛实验,本研究提出的框架在精度、召回率、F1分数和准确率等关键评估指标上表现优于其他方法。本研究为理解和预测社交网络中的链接动态提供了新的视角,具有重要的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efe8/11202929/9b0dda95e20e/entropy-26-00477-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验