Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
J Am Chem Soc. 2024 Jan 17;146(2):1580-1587. doi: 10.1021/jacs.3c11722. Epub 2024 Jan 2.
Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature's strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C-O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-to-nature C-C bond-forming strategy to assemble diverse lactone structures. These engineered "carbene transferases" catalyze intramolecular carbene insertions into benzylic or allylic C-H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C-H functionalization.
内酯是具有广泛应用的环状酯类,包括材料科学、药物化学、食品和香料工业。自然界合成许多天然产物中的内酯,总是依赖于单一类型的反合成策略,即 C-O 键的切断。在这里,我们描述了一组经过实验室设计的酶,这些酶使用新的 C-C 键形成策略来组装各种内酯结构。这些经过工程设计的“碳烯转移酶”催化碳烯分子内插入苄基或烯丙基 C-H 键,从而可以从简单的起始原料合成具有不同环大小和环骨架的内酯。从先前为其他碳烯转移活性设计的丝氨酸连接细胞色素 P450 变体开始,定向进化生成了变体 P411-LAS-5247,其对构建五元 ε-内酯、内酰胺和环状酮产物具有很高的活性(高达 5600 总转化数(TTN)和>99%的对映体过量(ee))。进一步的工程设计导致变体 P411-LAS-5249 和 P411-LAS-5264 的产生,分别提供六元 δ-内酯和七元 ε-内酯,克服了与这些产物相关的热力学不利的环应变,与 γ-内酯相比。这种新的碳烯转移活性进一步扩展到基于稠合、桥连和螺环的复杂内酯支架的合成。这里开发的酶学平台补充了内酯组装的天然生物合成策略,并扩展了通过 C-H 功能化可获得的内酯的结构多样性。