Suppr超能文献

酶促组装多种内酯结构:一种分子内 C-H 功能化策略。

Enzymatic Assembly of Diverse Lactone Structures: An Intramolecular C-H Functionalization Strategy.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

J Am Chem Soc. 2024 Jan 17;146(2):1580-1587. doi: 10.1021/jacs.3c11722. Epub 2024 Jan 2.

Abstract

Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature's strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C-O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-to-nature C-C bond-forming strategy to assemble diverse lactone structures. These engineered "carbene transferases" catalyze intramolecular carbene insertions into benzylic or allylic C-H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C-H functionalization.

摘要

内酯是具有广泛应用的环状酯类,包括材料科学、药物化学、食品和香料工业。自然界合成许多天然产物中的内酯,总是依赖于单一类型的反合成策略,即 C-O 键的切断。在这里,我们描述了一组经过实验室设计的酶,这些酶使用新的 C-C 键形成策略来组装各种内酯结构。这些经过工程设计的“碳烯转移酶”催化碳烯分子内插入苄基或烯丙基 C-H 键,从而可以从简单的起始原料合成具有不同环大小和环骨架的内酯。从先前为其他碳烯转移活性设计的丝氨酸连接细胞色素 P450 变体开始,定向进化生成了变体 P411-LAS-5247,其对构建五元 ε-内酯、内酰胺和环状酮产物具有很高的活性(高达 5600 总转化数(TTN)和>99%的对映体过量(ee))。进一步的工程设计导致变体 P411-LAS-5249 和 P411-LAS-5264 的产生,分别提供六元 δ-内酯和七元 ε-内酯,克服了与这些产物相关的热力学不利的环应变,与 γ-内酯相比。这种新的碳烯转移活性进一步扩展到基于稠合、桥连和螺环的复杂内酯支架的合成。这里开发的酶学平台补充了内酯组装的天然生物合成策略,并扩展了通过 C-H 功能化可获得的内酯的结构多样性。

相似文献

1
Enzymatic Assembly of Diverse Lactone Structures: An Intramolecular C-H Functionalization Strategy.
J Am Chem Soc. 2024 Jan 17;146(2):1580-1587. doi: 10.1021/jacs.3c11722. Epub 2024 Jan 2.
2
Engineered Cytochrome -Catalyzed Lactone-Carbene B-H Insertion.
Synlett. 2019 Mar;30(4):378-382. doi: 10.1055/s-0037-1611662. Epub 2019 Jan 14.
3
An Enzymatic Platform for the Highly Enantioselective and Stereodivergent Construction of Cyclopropyl-δ-lactones.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21634-21639. doi: 10.1002/anie.202007953. Epub 2020 Sep 17.
4
Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes.
J Am Chem Soc. 2020 Apr 15;142(15):6891-6895. doi: 10.1021/jacs.0c01313. Epub 2020 Mar 31.
5
Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp C-H functionalization.
Nature. 2019 Jan;565(7737):67-72. doi: 10.1038/s41586-018-0808-5. Epub 2018 Dec 19.
6
Biosynthesis and chemical diversity of β-lactone natural products.
Nat Prod Rep. 2019 Mar 20;36(3):458-475. doi: 10.1039/c8np00052b.
7
Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
Acc Chem Res. 2021 Mar 2;54(5):1209-1225. doi: 10.1021/acs.accounts.0c00591. Epub 2021 Jan 25.
8
Alternate Heme Ligation Steers Activity and Selectivity in Engineered Cytochrome P450-Catalyzed Carbene-Transfer Reactions.
J Am Chem Soc. 2018 Dec 5;140(48):16402-16407. doi: 10.1021/jacs.8b09613. Epub 2018 Nov 1.
10
Directed evolution of P411 enzymes for amination of inert C-H bonds.
Methods Enzymol. 2023;693:1-30. doi: 10.1016/bs.mie.2023.09.009. Epub 2023 Oct 13.

引用本文的文献

1
Amines tuned controllable carbonylation for the synthesis of γ-lactones and 1,4-diones.
Nat Commun. 2025 Jul 8;16(1):6305. doi: 10.1038/s41467-025-61762-6.
2
-Symmetric Bowl-Shaped Diruthenium Tetracarboxylate Catalysts for Enantioselective C-H Functionalization Using Donor/Acceptor Carbenes.
ACS Catal. 2025 Mar 27;15(8):5906-5914. doi: 10.1021/acscatal.5c01052. eCollection 2025 Apr 18.
3
Catalyzing the future: recent advances in chemical synthesis using enzymes.
Curr Opin Chem Biol. 2024 Dec;83:102536. doi: 10.1016/j.cbpa.2024.102536. Epub 2024 Oct 5.

本文引用的文献

1
Enantio- and Diastereoenriched Enzymatic Synthesis of 1,2,3-Polysubstituted Cyclopropanes from (/)-Trisubstituted Enol Acetates.
J Am Chem Soc. 2023 Jul 26;145(29):16176-16185. doi: 10.1021/jacs.3c04870. Epub 2023 Jul 11.
2
Facile access to chiral γ-butyrolactones rhodium-catalysed asymmetric hydrogenation of γ-butenolides and γ-hydroxybutenolides.
Chem Sci. 2023 Apr 15;14(18):4888-4892. doi: 10.1039/d3sc00491k. eCollection 2023 May 10.
3
A Review of the Pharmacological Activities and Recent Synthetic Advances of γ-Butyrolactones.
Int J Mol Sci. 2021 Mar 9;22(5):2769. doi: 10.3390/ijms22052769.
4
Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
Acc Chem Res. 2021 Mar 2;54(5):1209-1225. doi: 10.1021/acs.accounts.0c00591. Epub 2021 Jan 25.
5
Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes.
J Am Chem Soc. 2020 Apr 15;142(15):6891-6895. doi: 10.1021/jacs.0c01313. Epub 2020 Mar 31.
6
Regio- and Enantio-selective Chemo-enzymatic C-H-Lactonization of Decanoic Acid to (S)-δ-Decalactone.
Angew Chem Int Ed Engl. 2019 Apr 16;58(17):5668-5671. doi: 10.1002/anie.201901242. Epub 2019 Mar 26.
7
Toward Upscaled Biocatalytic Preparation of Lactone Building Blocks for Polymer Applications.
Org Process Res Dev. 2018 Jul 20;22(7):803-812. doi: 10.1021/acs.oprd.8b00079. Epub 2018 Jun 12.
8
Biocatalytic synthesis of lactones and lactams.
Chem Asian J. 2018 Dec 4;13(23):3601-3610. doi: 10.1002/asia.201801180. Epub 2018 Oct 18.
9
Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes.
ACS Cent Sci. 2018 Mar 28;4(3):372-377. doi: 10.1021/acscentsci.7b00548. Epub 2018 Feb 21.
10
Enzymatic construction of highly strained carbocycles.
Science. 2018 Apr 6;360(6384):71-75. doi: 10.1126/science.aar4239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验