Suppr超能文献

单纳米晶体中揭示的“巨型”量子点热辅助光漂白的光物理学

Photophysics of Thermally-Assisted Photobleaching in "Giant" Quantum Dots Revealed in Single Nanocrystals.

作者信息

Orfield Noah J, Majumder Somak, McBride James R, Yik-Ching Koh Faith, Singh Ajay, Bouquin Sarah J, Casson Joanna L, Johnson Alex D, Sun Liuyang, Li Xiaoqin, Shih Chih-Kang, Rosenthal Sandra J, Hollingsworth Jennifer A, Htoon Han

机构信息

Materials Physics and Applications Division: Center for Integrated Nanotechnologies , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.

Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States.

出版信息

ACS Nano. 2018 May 22;12(5):4206-4217. doi: 10.1021/acsnano.7b07450. Epub 2018 May 7.

Abstract

Quantum dots (QDs) are steadily being implemented as down-conversion phosphors in market-ready display products to enhance color rendering, brightness, and energy efficiency. However, for adequate longevity, QDs must be encased in a protective barrier that separates them from ambient oxygen and humidity, and device architectures are designed to avoid significant heating of the QDs as well as direct contact between the QDs and the excitation source. In order to increase the utility of QDs in display technologies and to extend their usefulness to more demanding applications as, for example, alternative phosphors for solid-state lighting (SSL), QDs must retain their photoluminescence emission properties over extended periods of time under conditions of high temperature and high light flux. Doing so would simplify the fabrication costs for QD display technologies and enable QDs to be used as down-conversion materials in light-emitting diodes for SSL, where direct-on-chip configurations expose the emitters to temperatures approaching 100 °C and to photon fluxes from 0.1 W/mm to potentially 10 W/mm. Here, we investigate the photobleaching processes of single QDs exposed to controlled temperature and photon flux. In particular, we investigate two types of room-temperature-stable core/thick-shell QDs, known as "giant" QDs for which shell growth is conducted using either a standard layer-by-layer technique or by a continuous injection method. We determine the mechanistic pathways responsible for thermally-assisted photodegradation, distinguishing effects of hot-carrier trapping and QD charging. The findings presented here will assist in the further development of advanced QD heterostructures for maximum device lifetime stability.

摘要

量子点(QDs)正逐步被应用于已上市的显示产品中作为下转换磷光体,以提高显色性、亮度和能源效率。然而,为了获得足够长的使用寿命,量子点必须被包裹在一个保护屏障中,使其与周围的氧气和湿度隔离开来,并且器件架构的设计要避免量子点出现显著发热以及量子点与激发源之间的直接接触。为了提高量子点在显示技术中的实用性,并将其应用扩展到更苛刻的应用领域,例如作为固态照明(SSL)的替代磷光体,量子点必须在高温和高光通量条件下长时间保持其光致发光发射特性。这样做将简化量子点显示技术的制造成本,并使量子点能够用作SSL发光二极管中的下转换材料,在这种芯片直接配置中,发光体暴露在接近100°C的温度下以及0.1W/mm至潜在的10W/mm的光子通量下。在这里,我们研究了单个量子点在受控温度和光子通量下的光漂白过程。特别是,我们研究了两种室温稳定的核/厚壳量子点,即所谓的“巨型”量子点,其壳层生长采用标准的逐层技术或连续注入法。我们确定了负责热辅助光降解的机制途径,区分了热载流子俘获和量子点充电的影响。这里呈现的研究结果将有助于进一步开发先进的量子点异质结构,以实现最大的器件寿命稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验