Suppr超能文献

铪基新兴纳米材料的合成与生物应用。

Synthesis and Bioapplication of Emerging Nanomaterials of Hafnium.

机构信息

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

ACS Nano. 2024 Jan 16;18(2):1289-1324. doi: 10.1021/acsnano.3c08917. Epub 2024 Jan 2.

Abstract

A significant amount of progress in nanotechnology has been made due to the development of engineered nanoparticles. The use of metallic nanoparticles for various biomedical applications has been extensively investigated. Biomedical research is highly focused on them because of their inert nature, nanoscale structure, and similar size to many biological molecules. The intrinsic characteristics of these particles, including electronic, optical, physicochemical, and surface plasmon resonance, that can be altered by altering their size, shape, environment, aspect ratio, ease of synthesis, and functionalization properties, have led to numerous biomedical applications. Targeted drug delivery, sensing, photothermal and photodynamic therapy, and imaging are some of these. The promising clinical results of NBTXR3, a high-Z radiosensitizing nanomaterial derived from hafnium, have demonstrated translational potential of this metal. This radiosensitization approach leverages the dependence of energy attenuation on atomic number to enhance energy-matter interactions conducive to radiation therapy. High-Z nanoparticle localization in tumor issue differentially increases the effect of ionizing radiation on cancer cells versus nearby healthy ones and mitigates adverse effects by reducing the overall radiation burden. This principle enables material multifunctionality as contrast agents in X-ray-based imaging. The physiochemical properties of hafnium (Z = 72) are particularly advantageous for these applications. A well-placed K-edge absorption energy and high mass attenuation coefficient compared to elements in human tissue across clinical energy ranges leads to significant attenuation. Chemical reactivity allows for variety in nanoparticle synthesis, composition, and functionalization. Nanoparticles such as hafnium oxide exhibit excellent biocompatibility due to physiochemical inertness prior to incidence with ionizing radiation. Additionally, the optical and electronic properties are applicable in biosensing, optical component coatings, and semiconductors. The wide interest has prompted extensive research in design and synthesis to facilitate property fine-tuning. This review summarizes synthetic methods for hafnium-based nanomaterials and applications in therapy, imaging, and biosensing with a mechanistic focus. A discussion and future perspective section highlights clinical progress and elaborates on current challenges. By focusing on factors impacting applicational effectiveness and examining limitations this review aims to support researchers and expedite clinical translation of future hafnium-based nanomedicine.

摘要

由于工程纳米粒子的发展,纳米技术取得了重大进展。金属纳米粒子在各种生物医学应用中的使用已经得到了广泛的研究。由于其惰性、纳米级结构和与许多生物分子相似的尺寸,生物医学研究对它们高度关注。这些粒子的固有特性,包括电子、光学、物理化学和表面等离子体共振,可以通过改变它们的尺寸、形状、环境、纵横比、合成的容易程度和功能化特性来改变,这导致了许多生物医学应用。其中包括靶向药物输送、传感、光热和光动力治疗以及成像。高 Z 放射增敏纳米材料 NBTXR3(源自铪)的有前景的临床结果表明了这种金属的转化潜力。这种放射增敏方法利用了能量衰减对原子数的依赖性,以增强有利于放射治疗的能量物质相互作用。高 Z 纳米粒子在肿瘤组织中的定位差异增加了电离辐射对癌细胞的作用,而对附近的健康细胞的作用较小,并通过减少整体辐射负担来减轻不良反应。这个原则使材料具有多功能性,可用作 X 射线成像中的造影剂。铪的物理化学性质在这些应用中特别有利。与临床能量范围内人体组织中的元素相比,铪具有良好的 K 边吸收能量和高质量衰减系数,导致显著衰减。化学反应性允许在纳米粒子合成、组成和功能化方面进行多种变化。氧化铪等纳米粒子由于在与电离辐射相互作用之前具有物理化学惰性,因此表现出优异的生物相容性。此外,光学和电子特性可应用于生物传感、光学元件涂层和半导体。广泛的兴趣促使人们进行了广泛的设计和合成研究,以促进特性的微调。这篇综述总结了基于铪的纳米材料的合成方法及其在治疗、成像和生物传感中的应用,并重点介绍了其机理。讨论和未来展望部分强调了临床进展,并详细阐述了当前的挑战。通过关注影响应用效果的因素,并检查限制因素,本综述旨在为研究人员提供支持,并加速未来基于铪的纳米医学的临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验