Nanobiotix, 60 rue de Wattignies, 75012 Paris, France.
Anticancer Res. 2014 Jan;34(1):443-53.
Since the discovery of cisplatin about 40 years ago, the design of innovative metal-based anticancer drugs is a growing area of research. Transition metal coordination complexes offer potential advantages over the more common organic-based drugs, including a wide range of coordination number and geometries, accessible redox states, tunability of the thermodynamics and kinetics of ligand substitution, as well as a wide structural diversity. Metal-based substances interact with cell molecular targets, affecting biochemical functions resulting in cancer cell destruction. Radionuclides are another way to use metals as anticancer therapy. The metal nucleus of the unstable radionuclide becomes stable by emitting energy. The biological effect in different tissues is obtained by the absorption of this energy from the radiation emitted by the radionuclide, the principal target generally agreed for ionizing radiations being DNA. A new area of clinical research is now emerging using the same experimental metal elements, but in a radically different manner: metals and metal oxides used as crystalline nanosized particles. In this field, man-made functionalized nanoparticles of high electron density and well-defined size and shape offer the possibility of entering cancer cells and depositing high amounts of energy in the tumor only when exposed to ionizing radiations (on/off activity). These nanoparticles, such as hafnium oxide engineered as 50 nm-sized spheres, functionalized with a negative surface (NBTXR3 nanoparticles), have been developed as selective radioenhancers, which represents a breakthrough approach for the local treatment of solid tumors. The properties of NBTXR3 nanoparticles, their chemistry, size, shape and surface charge, have been designed for efficient tumor cell uptake. NBTXR3 brings a physical mode of action, that of radiotherapy, within the cancer cells themselves. Physicochemical characteristics of NBTXR3 have demonstrated a very promising benefit-risk ratio for human healthcare across a broad non-clinical program. NBTXR3 has entered clinical development in therapy of advanced soft tissue sarcomas and head and neck cancer.
自大约 40 年前发现顺铂以来,设计创新的基于金属的抗癌药物是一个不断发展的研究领域。过渡金属配合物相对于更常见的有机药物具有潜在的优势,包括广泛的配位数和几何形状、可及的氧化还原态、配体取代热力学和动力学的可调变性,以及广泛的结构多样性。基于金属的物质与细胞分子靶标相互作用,影响生化功能,导致癌细胞破坏。放射性核素是另一种将金属用作抗癌治疗的方法。放射性核素不稳定的金属核通过发射能量变得稳定。通过吸收放射性核素发射的辐射能量,在不同组织中获得生物效应,对于电离辐射,通常一致的主要靶标是 DNA。现在,一个新的临床研究领域正在出现,使用相同的实验金属元素,但以完全不同的方式:将金属和金属氧化物用作结晶纳米颗粒。在这个领域,人为功能化的高电子密度纳米颗粒具有明确的尺寸和形状,当暴露于电离辐射时(开/关活性),有可能进入癌细胞并在肿瘤中沉积大量能量。这些纳米颗粒,如设计为 50nm 大小球体的氧化铪,表面功能化为负电荷(NBTXR3 纳米颗粒),已被开发为选择性放射增敏剂,这是治疗实体瘤的局部治疗的突破方法。NBTXR3 纳米颗粒的特性,其化学性质、尺寸、形状和表面电荷,已经被设计用于高效的肿瘤细胞摄取。NBTXR3 将放射治疗的物理作用模式带入癌细胞本身。NBTXR3 的物理化学特性在广泛的非临床计划中证明了对人类健康非常有前途的获益-风险比。NBTXR3 已进入晚期软组织肉瘤和头颈部癌症治疗的临床开发阶段。
Anticancer Res. 2014-1
Radiat Oncol. 2014-6-30
Nanotechnology. 2010-1-26
ACS Nano. 2024-1-16
Bull Cancer. 2015-1
Drug Resist Updat. 2006-6
J Exp Clin Cancer Res. 2024-1-3
Front Chem. 2023-11-24
Crit Rev Oncog. 2022
Bioengineering (Basel). 2023-1-12
Biomater Sci. 2022-11-8