Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Korea.
Neuroradiology. 2021 Mar;63(3):343-352. doi: 10.1007/s00234-020-02529-2. Epub 2020 Aug 21.
To assess whether the radiomic features of diffusion tensor imaging (DTI) and conventional postcontrast T1-weighted (T1C) images can differentiate the epidermal growth factor receptor (EGFR) mutation status in brain metastases from non-small cell lung cancer (NSCLC).
A total of 99 brain metastases in 51 patients who underwent surgery or biopsy with underlying NSCLC and known EGFR mutation statuses (57 from EGFR wild type, 42 from EGFR mutant) were allocated to the training (57 lesions in 31 patients) and test (42 lesions in 20 patients) sets. Radiomic features (n = 526) were extracted from preoperative MR images including T1C and DTI. Radiomics classifiers were constructed by combinations of five feature selectors and four machine learning algorithms. The trained classifiers were validated on the test set, and the classifier performance was assessed by determining the area under the curve (AUC).
EGFR mutation status showed an overall discordance rate of 12% between the primary tumors and corresponding brain metastases. The best performing classifier was a combination of the tree-based feature selection and linear discriminant algorithm and 5 features were selected (1 from ADC, 2 from fractional anisotropy, and 2 from T1C images), resulting in an AUC, accuracy, sensitivity, and specificity of 0.73, 78.6%, 81.3%, and 76.9% in the test set, respectively.
Radiomics classifiers integrating multiparametric MRI parameters may have potential in differentiating the EGFR mutation status in brain metastases from NSCLC.
评估扩散张量成像(DTI)和常规对比后 T1 加权(T1C)图像的放射组学特征是否可以区分非小细胞肺癌(NSCLC)脑转移中表皮生长因子受体(EGFR)突变状态。
共纳入 51 例经手术或活检证实为 NSCLC 且 EGFR 突变状态已知(57 例 EGFR 野生型,42 例 EGFR 突变型)的脑转移患者的 99 个脑转移灶,将其分为训练集(31 例患者的 57 个病灶)和测试集(20 例患者的 42 个病灶)。从术前 MRI 图像(包括 T1C 和 DTI)中提取放射组学特征(n=526)。通过五种特征选择器和四种机器学习算法的组合构建放射组学分类器。在测试集上验证训练好的分类器,并通过确定曲线下面积(AUC)来评估分类器的性能。
原发性肿瘤和相应脑转移灶的 EGFR 突变状态总体不一致率为 12%。表现最佳的分类器是基于树的特征选择和线性判别算法的组合,选择了 5 个特征(1 个来自 ADC,2 个来自各向异性分数,2 个来自 T1C 图像),在测试集上的 AUC、准确率、敏感度和特异度分别为 0.73、78.6%、81.3%和 76.9%。
整合多参数 MRI 参数的放射组学分类器可能具有区分 NSCLC 脑转移中 EGFR 突变状态的潜力。