Suppr超能文献

机器学习和放射组学在预测空洞性肺结核多药耐药中的应用:一项多中心研究。

Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study.

机构信息

Department of Radiology, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.

Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.

出版信息

Eur Radiol. 2023 Jan;33(1):391-400. doi: 10.1007/s00330-022-08997-9. Epub 2022 Jul 19.

Abstract

OBJECTIVES

Multidrug-resistant tuberculosis (MDR-TB) is a major challenge to global health security. Early identification of MDR-TB patients increases the likelihood of treatment success and interrupts transmission. We aimed to develop a predictive model for MDR to cavitary pulmonary TB using CT radiomics features.

METHODS

This retrospective study included 257 consecutive patients with proven active cavitary TB (training cohort: 187 patients from Beijing Chest Hospital; testing cohort: 70 patients from Infectious Disease Hospital of Heilongjiang Province). Radiomics features were extracted from the segmented cavitation. A radiomics model was constructed to predict MDR using a random forest classifier. Meaningful clinical characteristics and subjective CT findings comprised the clinical model. The radiomics and clinical models were combined to create a combined model. ROC curves were used to validate the capability of the models in the training and testing cohorts.

RESULTS

Twenty-one radiomics features were selected as optimal predictors to build the model for predicting MDR-TB. The AUCs of the radiomics model were significantly higher than those of the clinical model in either the training cohort (0.844 versus 0.589, p < 0.05) or the testing cohort (0.829 versus 0.500, p < 0.05). The AUCs of the radiomics model were slightly lower than those of the combined model in the training cohort (0.844 versus 0.881, p > 0.05) and testing cohort (0.829 versus 0.834, p > 0.05), but there was no significant difference.

CONCLUSIONS

The radiomics model has the potential to predict MDR in cavitary TB patients and thus has the potential to be a diagnostic tool.

KEY POINTS

• This is the first study to build and validate models that distinguish MDR-TB from DS-TB with clinical and radiomics features based on cavitation. • The radiomics model demonstrated good performance and might potentially aid in prior TB characterisation treatment. • This noninvasive and convenient technique can be used as a diagnosis tool into routine clinical practice.

摘要

目的

耐多药结核病(MDR-TB)对全球卫生安全构成重大挑战。早期识别 MDR-TB 患者可提高治疗成功率并阻断传播。我们旨在使用 CT 放射组学特征为空洞性肺结核(PTB)患者建立 MDR 预测模型。

方法

本回顾性研究纳入了 257 例经证实的活动性空洞性肺结核(训练队列:来自北京胸科医院的 187 例患者;测试队列:来自黑龙江省传染病医院的 70 例患者)。从分割的空洞中提取放射组学特征。使用随机森林分类器构建放射组学模型以预测 MDR。有意义的临床特征和主观 CT 发现构成了临床模型。将放射组学和临床模型相结合,创建了联合模型。ROC 曲线用于验证模型在训练和测试队列中的能力。

结果

选择了 21 个放射组学特征作为预测 MDR-TB 的最佳预测因子来构建模型。在训练队列(0.844 与 0.589,p<0.05)和测试队列(0.829 与 0.500,p<0.05)中,放射组学模型的 AUC 均显著高于临床模型。在训练队列(0.844 与 0.881,p>0.05)和测试队列(0.829 与 0.834,p>0.05)中,放射组学模型的 AUC 略低于联合模型,但无显著差异。

结论

放射组学模型具有预测空洞性肺结核患者 MDR 的潜力,因此具有作为诊断工具的潜力。

重点

• 这是第一项使用基于空洞的临床和放射组学特征建立和验证区分 MDR-TB 和 DS-TB 模型的研究。• 放射组学模型表现出良好的性能,可能有助于结核病的前期特征治疗。• 这项非侵入性且方便的技术可作为常规临床实践中的诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9c8/9294743/ff1966efbe08/330_2022_8997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验