Loizillon Sophie, Bottani Simona, Maire Aurélien, Ströer Sebastian, Dormont Didier, Colliot Olivier, Burgos Ninon
Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris 75013, France.
AP-HP, Innovation & Données - Département des Services Numériques, Paris 75012, France.
Med Image Anal. 2024 Apr;93:103073. doi: 10.1016/j.media.2023.103073. Epub 2023 Dec 23.
Containing the medical data of millions of patients, clinical data warehouses (CDWs) represent a great opportunity to develop computational tools. Magnetic resonance images (MRIs) are particularly sensitive to patient movements during image acquisition, which will result in artefacts (blurring, ghosting and ringing) in the reconstructed image. As a result, a significant number of MRIs in CDWs are corrupted by these artefacts and may be unusable. Since their manual detection is impossible due to the large number of scans, it is necessary to develop tools to automatically exclude (or at least identify) images with motion in order to fully exploit CDWs. In this paper, we propose a novel transfer learning method from research to clinical data for the automatic detection of motion in 3D T1-weighted brain MRI. The method consists of two steps: a pre-training on research data using synthetic motion, followed by a fine-tuning step to generalise our pre-trained model to clinical data, relying on the labelling of 4045 images. The objectives were both (1) to be able to exclude images with severe motion, (2) to detect mild motion artefacts. Our approach achieved excellent accuracy for the first objective with a balanced accuracy nearly similar to that of the annotators (balanced accuracy>80 %). However, for the second objective, the performance was weaker and substantially lower than that of human raters. Overall, our framework will be useful to take advantage of CDWs in medical imaging and highlight the importance of a clinical validation of models trained on research data.
临床数据仓库(CDW)包含数百万患者的医学数据,为开发计算工具提供了巨大机遇。磁共振成像(MRI)在图像采集过程中对患者运动特别敏感,这会在重建图像中产生伪影(模糊、重影和振铃)。因此,CDW中的大量MRI被这些伪影破坏,可能无法使用。由于扫描数量众多,无法手动检测,因此有必要开发工具来自动排除(或至少识别)有运动的图像,以便充分利用CDW。在本文中,我们提出了一种从研究数据到临床数据的新型迁移学习方法,用于自动检测三维T1加权脑MRI中的运动。该方法包括两个步骤:首先使用合成运动对研究数据进行预训练,然后进行微调步骤,依靠4045幅图像的标注将预训练模型推广到临床数据。目标有两个:(1)能够排除有严重运动的图像;(2)检测轻度运动伪影。对于第一个目标,我们的方法取得了优异的准确率,平衡准确率与注释者的相近(平衡准确率>80%)。然而,对于第二个目标,性能较弱,明显低于人工评分者。总体而言,我们的框架将有助于在医学成像中利用CDW,并突出对基于研究数据训练的模型进行临床验证的重要性。