Suppr超能文献

利用深度卷积神经网络和 X 射线照片自动检测冠状病毒病。

Auto-detection of the coronavirus disease by using deep convolutional neural networks and X-ray photographs.

机构信息

Department of Computer Science, Faculty of Information Technology, Middle East University, Amman, Jordan.

Department of Computer Sciences, Yusuf Maitama Sule University, Kofar Nassarawa, Kano, 700222, Nigeria.

出版信息

Sci Rep. 2024 Jan 4;14(1):534. doi: 10.1038/s41598-023-47038-3.

Abstract

The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.

摘要

最常用于检测 2019 年冠状病毒病(COVID-19)的方法是实时聚合酶链反应。然而,这种方法存在几个缺点,包括成本高、结果的周转时间长,以及由于敏感性有限而导致假阴性结果的可能性。为了解决这些问题,已经采用了计算机断层扫描(CT)或 X 射线等其他技术来诊断该疾病。由于 X 射线机的广泛可用性、较低的电离辐射以及设备成本较低,因此胸部 X 射线比 CT 扫描更常用。COVID-19 呈现出某些放射学生物标志物,可以通过胸部 X 射线观察到,这使得放射科医生有必要手动搜索这些生物标志物。然而,这个过程既耗时又容易出错。因此,迫切需要开发一种用于评估胸部 X 射线的自动化系统。深度学习技术可以用于加速这个过程。在这项研究中,提出了一种称为定制卷积神经网络(Custom-CNN)的基于深度学习的方法,用于识别胸部 X 射线中的 COVID-19 感染。Custom-CNN 模型由八个加权层组成,并利用诸如辍学和批量归一化等策略来提高性能并减少过拟合。所提出的方法实现了 98.19%的分类准确性,旨在准确分类 COVID-19、正常和肺炎样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f55/10766625/4d4fe1236a73/41598_2023_47038_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验