Cha Minjeong, Emre Emine Sumeyra Turali, Xiao Xiongye, Kim Ji-Young, Bogdan Paul, VanEpps J Scott, Violi Angela, Kotov Nicholas A
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
Nat Comput Sci. 2022 Apr;2(4):243-252. doi: 10.1038/s43588-022-00229-w. Epub 2022 Apr 28.
Biomimetic nanoparticles are known to serve as nanoscale adjuvants, enzyme mimics and amyloid fibrillation inhibitors. Their further development requires better understanding of their interactions with proteins. The abundant knowledge about protein-protein interactions can serve as a guide for designing protein-nanoparticle assemblies, but the chemical and biological inputs used in computational packages for protein-protein interactions are not applicable to inorganic nanoparticles. Analysing chemical, geometrical and graph-theoretical descriptors for protein complexes, we found that geometrical and graph-theoretical descriptors are uniformly applicable to biological and inorganic nanostructures and can predict interaction sites in protein pairs with accuracy >80% and classification probability ~90%. We extended the machine-learning algorithms trained on protein-protein interactions to inorganic nanoparticles and found a nearly exact match between experimental and predicted interaction sites with proteins. These findings can be extended to other organic and inorganic nanoparticles to predict their assemblies with biomolecules and other chemical structures forming lock-and-key complexes.
众所周知,仿生纳米颗粒可作为纳米级佐剂、酶模拟物和淀粉样蛋白原纤维抑制剂。它们的进一步发展需要更好地理解其与蛋白质的相互作用。关于蛋白质 - 蛋白质相互作用的丰富知识可为设计蛋白质 - 纳米颗粒组装体提供指导,但用于蛋白质 - 蛋白质相互作用的计算软件包中所使用的化学和生物学输入不适用于无机纳米颗粒。通过分析蛋白质复合物的化学、几何和图论描述符,我们发现几何和图论描述符可统一应用于生物和无机纳米结构,并且能够以大于80%的准确度和约90%的分类概率预测蛋白质对中的相互作用位点。我们将基于蛋白质 - 蛋白质相互作用训练的机器学习算法扩展到无机纳米颗粒,并发现实验和预测的与蛋白质的相互作用位点之间几乎完全匹配。这些发现可扩展到其他有机和无机纳米颗粒,以预测它们与生物分子和形成锁钥复合物的其他化学结构的组装体。