School of Physics, The University of Sydney, Camperdown, New South Wales, Australia.
Centre for Complex Systems, The University of Sydney, Camperdown, New South Wales, Australia.
Nat Comput Sci. 2023 Oct;3(10):883-893. doi: 10.1038/s43588-023-00519-x. Epub 2023 Sep 25.
Scientists have developed hundreds of techniques to measure the interactions between pairs of processes in complex systems, but these computational methods-from contemporaneous correlation coefficients to causal inference methods-define and formulate interactions differently, using distinct quantitative theories that remain largely disconnected. Here we introduce a large assembled library of 237 statistics of pairwise interactions, and assess their behavior on 1,053 multivariate time series from a wide range of real-world and model-generated systems. Our analysis highlights commonalities between disparate mathematical formulations of interactions, providing a unified picture of a rich interdisciplinary literature. Using three real-world case studies, we then show that simultaneously leveraging diverse methods can uncover those most suitable for addressing a given problem, facilitating interpretable understanding of the quantitative formulation of pairwise dependencies that drive successful performance. Our results and accompanying software enable comprehensive analysis of time-series interactions by drawing on decades of diverse methodological contributions.
科学家们已经开发出数百种技术来测量复杂系统中对过程之间的相互作用,但是这些计算方法——从同时相关系数到因果推断方法——以不同的定量理论来定义和表述相互作用,这些理论在很大程度上仍然没有联系。在这里,我们引入了一个由 237 个成对相互作用统计量组成的大型综合库,并在来自广泛的真实系统和模型生成系统的 1053 个多元时间序列上评估它们的行为。我们的分析突出了相互作用的不同数学公式之间的共性,为丰富的跨学科文献提供了一个统一的图景。然后,我们使用三个真实世界的案例研究表明,同时利用多种方法可以揭示那些最适合解决给定问题的方法,促进对驱动成功表现的成对依赖的定量表述的可解释理解。我们的结果和随附的软件通过利用几十年来的各种方法学贡献,实现了对时间序列相互作用的全面分析。