Suppr超能文献

用于个性化解读和预测神经振荡的脑电图驱动脑网络模型。

Electroencephalography-driven brain-network models for personalized interpretation and prediction of neural oscillations.

作者信息

Dubcek Tena, Ledergerber Debora, Thomann Jana, Aiello Giovanna, Serra Garcia Marc, Imbach Lukas, Polania Rafael

机构信息

Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland; ETH Zurich, Department of Health Sciences and Technology, Switzerland.

Swiss Epilepsy Center, Klinik Lengg, Zurich, Switzerland.

出版信息

Clin Neurophysiol. 2025 Jun;174:1-9. doi: 10.1016/j.clinph.2025.03.030. Epub 2025 Mar 27.

Abstract

OBJECTIVE

Develop an encephalography (EEG)-driven method that integrates interpretability, predictiveness, and personalization to assess the dynamics of the brain network, with a focus on pathological conditions such as pharmacoresistant epilepsy.

METHODS

We propose a method to identify dominant coherent oscillations from EEG recordings. It relies on the Koopman operator theory to achieve individualized EEG prediction and electrophysiological interpretability. We extend it with concepts from adiabatic theory to address the nonstationary and noisy EEG signals.

RESULTS

By simultaneously capturing the local spectral and connectivity aspects of patient-specific oscillatory dynamics, we are able to clarify the underlying dynamical mechanism. We use it to construct the corresponding generative models of the brain network. We demonstrate the proposed approach on recordings of patients in status epilepticus.

CONCLUSIONS

The proposed EEG-driven method opens new perspectives on integrating interpretability, predictiveness, and personalization within a unified framework. It provides a quantitative approach for assessing EEG recordings, crucial for understanding and modulating pathological brain activity.

SIGNIFICANCE

This work bridges theoretical neuroscience and clinical practice, offering a novel framework for understanding and predicting brain network dynamics. The resulting approach paves the way for data-driven insights into brain network mechanisms and the design of personalized neuromodulation therapies.

摘要

目的

开发一种由脑电图(EEG)驱动的方法,该方法整合可解释性、预测性和个性化,以评估脑网络的动态变化,重点关注药物难治性癫痫等病理状况。

方法

我们提出一种从EEG记录中识别主导相干振荡的方法。它依靠柯普曼算子理论来实现个性化的EEG预测和电生理可解释性。我们用绝热理论的概念对其进行扩展,以处理非平稳和有噪声的EEG信号。

结果

通过同时捕捉患者特定振荡动态的局部频谱和连接方面,我们能够阐明潜在的动力学机制。我们用它来构建相应的脑网络生成模型。我们在癫痫持续状态患者的记录上展示了所提出的方法。

结论

所提出的由EEG驱动的方法在统一框架内整合可解释性、预测性和个性化方面开辟了新的视角。它为评估EEG记录提供了一种定量方法,这对于理解和调节病理性脑活动至关重要。

意义

这项工作架起了理论神经科学和临床实践之间的桥梁,为理解和预测脑网络动态提供了一个新的框架。由此产生的方法为基于数据洞察脑网络机制和设计个性化神经调节疗法铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb42/12118533/dab6d3a7d898/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验