Suppr超能文献

主要脂质和脂蛋白水平与血压升高风险的关系:一项孟德尔随机化研究。

Major lipids and lipoprotein levels and risk of blood pressure elevation: a Mendelian Randomisation study.

机构信息

Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Institute of Model Animal, Wuhan University, Wuhan, China.

Department of Cardiology, Huanggang Central Hospital of Yangtze University, Huanggang, China; Huanggang Institute of Translational Medicine, Huanggang, China.

出版信息

EBioMedicine. 2024 Feb;100:104964. doi: 10.1016/j.ebiom.2023.104964. Epub 2024 Jan 5.

Abstract

BACKGROUND

Quantitative nuclear magnetic resonance (NMR) metabolomics techniques provide detailed measurements of lipoprotein particle concentration. Metabolic dysfunction often represents a cluster of conditions, including dyslipidaemia, hypertension, and diabetes, that increase the risk of cardiovascular diseases (CVDs). However, the causal relationship between lipid profiles and blood pressure (BP) remains unclear. We performed a Mendelian Randomisation (MR) study to disentangle and prioritize the potential causal effects of major lipids, lipoprotein particles, and circulating metabolites on BP and pulse pressure (PP).

METHODS

We employed single-nucleotide polymorphisms (SNPs) associated with major lipids, lipoprotein particles, and other metabolites from the UK Biobank as instrumental variables. Summary-level data for BP and PP were obtained from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Two-sample MR and MR Bayesian model averaging approaches (MR-BMA) were conducted to analyse and rank causal associations.

FINDINGS

Genetically predicted TG was the most likely causal exposure among the major lipids to increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), with marginal inclusion probabilities (MIPs) of 0.993 and 0.847, respectively. Among the majority of lipoproteins and their containing lipids, including major lipids, genetically elevated TG in small high-density lipoproteins (S_HDL_TG) had the strongest association with the increase of SBP and DBP, with MIPs of 0.416 and 0.397, respectively. HDL cholesterol (HDL_C) and low-density lipoprotein cholesterol (LDL_C) were potential causal factors for PP elevation among the major lipids (MIP = 0.927 for HDL_C and MIP = 0.718 for LDL_C). Within the sub-lipoproteins, genetically predicted atherogenic lipoprotein particles (i.e., sub-very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and LDL particles) had the most likely causal impact on increasing PP.

INTERPRETATION

This study provides genetic evidence for the causality of lipids on BP indicators. However, the effect size on SBP, DBP, and PP varies depending on the lipids' components and sizes. Understanding this potential relationship may inform the potential benefits of comprehensive management of lipid profiles for BP control.

FUNDING

Key Research and Development Program of Hubei Province, Science and Technology Innovation Project of Huanggang Central Hospital of Yangtze University, the Hubei Industrial Technology Research Institute of Heart-Brain Diseases, and the Hubei Provincial Engineering Research Centre of Comprehensive Care for Heart-Brain Diseases.

摘要

背景

定量核磁共振(NMR)代谢组学技术可提供脂蛋白颗粒浓度的详细测量。代谢功能障碍通常代表一组病症,包括血脂异常、高血压和糖尿病,这些病症会增加心血管疾病(CVD)的风险。然而,脂质谱与血压(BP)之间的因果关系仍不清楚。我们进行了孟德尔随机化(MR)研究,以厘清和优先考虑主要脂质、脂蛋白颗粒和循环代谢物对 BP 和脉搏压(PP)的潜在因果影响。

方法

我们使用来自英国生物库的与主要脂质、脂蛋白颗粒和其他代谢物相关的单核苷酸多态性(SNP)作为工具变量。BP 和 PP 的汇总水平数据来自遗传流行病学研究成人健康与衰老(GERA)队列。采用两样本 MR 和 MR 贝叶斯模型平均(MR-BMA)方法进行分析和排名因果关联。

结果

在所研究的主要脂质中,遗传预测的甘油三酯(TG)是最有可能导致收缩压(SBP)和舒张压(DBP)升高的因素,其边际纳入概率(MIP)分别为 0.993 和 0.847。在大多数脂蛋白及其所含脂质中,包括主要脂质,小而高密度脂蛋白中的遗传升高的 TG(S_HDL_TG)与 SBP 和 DBP 的升高相关性最强,MIP 分别为 0.416 和 0.397。高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)是主要脂质中升高 PP 的潜在因果因素(MIP 分别为 0.927 和 0.718)。在亚脂蛋白中,遗传预测的致动脉粥样硬化脂蛋白颗粒(即亚极低密度脂蛋白(VLDL)、中间密度脂蛋白(IDL)和 LDL 颗粒)对增加 PP 的影响最有可能具有因果关系。

解释

本研究提供了脂质对 BP 指标的因果关系的遗传证据。然而,SBP、DBP 和 PP 的效应大小取决于脂质的成分和大小。了解这种潜在的关系可能有助于为控制 BP 提供全面管理脂质谱的潜在益处。

资助

湖北省重点研发计划、长江大学黄冈市中心医院科技创新项目、湖北省心脑疾病工业技术研究院、湖北省心脑疾病综合护理工程技术研究中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c616/10789600/5d27286997d7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验