Suppr超能文献

与日本轻症疾病或损伤患者在救护车转运中现场停留时间延长相关的因素:一项基于人群的观察性研究。

Factors associated with prolonged on-scene time in ambulance transportation among patients with minor diseases or injuries in Japan: a population-based observational study.

机构信息

Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Floor 2, Science Frontier Laboratory, Yoshidakonoe-cho, Sakyo-ku, Kyoto-shi, 606-8315, Kyoto, Japan.

Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.

出版信息

BMC Emerg Med. 2024 Jan 7;24(1):10. doi: 10.1186/s12873-023-00927-2.

Abstract

BACKGROUND

Prolonged prehospital time is a major global problem in the emergency medical system (EMS). Although factors related to prolonged on-scene times (OSTs) have been reported in patients with trauma and critical medical conditions, those in patients with minor diseases or injuries remain unclear. We examined factors associated with prolonged OSTs in patients with minor diseases or injuries.

METHODS

This population-based observational study used the ambulance transportation and request call record databases of the Higashihiroshima Fire Department, Japan, between January 1, 2016, and December 31, 2022. The participants were patients with minor diseases or injuries during the study period. We performed a multivariable logistic regression analysis with robust error variance to examine the association between patient age, sex, severity, accident type, date and time of ambulance call, and the coronavirus disease 2019 (COVID-19) pandemic with prolonged OSTs. Prolonged OST was defined as ≥ 30 min from the ambulance arrival at the scene to departure.

RESULTS

Of the 60,309 people transported by ambulance during the study period, 20,069 with minor diseases or injuries were included in the analysis. A total of 1,241 patients (6.2%) experienced prolonged OSTs. Fire accidents (adjusted odds ratio [aOR]: 7.77, 95% confidence interval [CI]: 3.82-15.79), natural disasters (aOR: 28.52, 95% CI: 2.09-389.76), motor vehicle accidents (aOR: 1.63, 95% CI: 1.30-2.06), assaults (aOR: 2.91, 95% CI: 1.86-4.53), self-injuries (aOR: 5.60, 95% CI: 3.37-9.32), number of hospital inquiries ≥ 4 (aOR: 77.34, 95% CI: 53.55-111.69), and the COVID-19 pandemic (aOR: 2.01, 95% CI: 1.62-2.50) were associated with prolonged OSTs. Moreover, older and female patients had prolonged OSTs (aOR: 1.18, 95% CI: 1.01-1.36 and aOR: 1.12, 95% CI: 1.08-1.18, respectively).

CONCLUSIONS

Older age, female sex, fire accidents, natural disasters, motor vehicle accidents, assaults, self-injuries, number of hospital inquiries ≥ 4, and the COVID-19 pandemic influenced prolonged OSTs among patients with minor diseases or injuries. To improve community EMS, we should reconsider how to intervene with potentially modifiable factors, such as EMS personnel performance, the impact of the presence of allied services, hospital patient acceptance systems, and cooperation between general emergency and psychiatric hospitals.

摘要

背景

在急救医疗系统(EMS)中,长时间的院前时间是一个全球性的主要问题。虽然已经报道了与创伤和危急医疗情况相关的与现场时间延长(OST)相关的因素,但与轻微疾病或损伤患者相关的因素仍不清楚。我们研究了与轻微疾病或损伤患者的 OST 延长相关的因素。

方法

本基于人群的观察性研究使用了日本东广岛消防局的救护车运输和请求呼叫记录数据库,时间为 2016 年 1 月 1 日至 2022 年 12 月 31 日。研究对象为研究期间患有轻微疾病或损伤的患者。我们使用具有稳健误差方差的多变量逻辑回归分析来检查患者年龄、性别、严重程度、事故类型、救护车呼叫的日期和时间以及 2019 年冠状病毒病(COVID-19)大流行与 OST 延长之间的关联。OST 延长定义为从救护车到达现场到离开的时间≥30 分钟。

结果

在研究期间,共有 60309 人通过救护车运送,其中 20069 人患有轻微疾病或损伤,纳入分析。共有 1241 名患者(6.2%)经历了 OST 延长。火灾(调整后的优势比[OR]:7.77,95%置信区间[CI]:3.82-15.79)、自然灾害(OR:28.52,95%CI:2.09-389.76)、机动车事故(OR:1.63,95%CI:1.30-2.06)、袭击(OR:2.91,95%CI:1.86-4.53)、自残(OR:5.60,95%CI:3.37-9.32)、医院咨询次数≥4(OR:77.34,95%CI:53.55-111.69)和 COVID-19 大流行(OR:2.01,95%CI:1.62-2.50)与 OST 延长相关。此外,年龄较大和女性患者的 OST 延长(OR:1.18,95%CI:1.01-1.36 和 OR:1.12,95%CI:1.08-1.18,分别)。

结论

年龄较大、女性、火灾、自然灾害、机动车事故、袭击、自残、医院咨询次数≥4 以及 COVID-19 大流行影响了轻微疾病或损伤患者的 OST 延长。为了改善社区 EMS,我们应该重新考虑如何干预潜在可改变的因素,例如 EMS 人员的表现、辅助服务的存在影响、医院患者接受系统以及综合紧急情况和精神病院之间的合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0d6/10773094/a0be11950e11/12873_2023_927_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验