Sun Xuewei, Li Yan, Li Guohou, Jin Songlin, Zhao Wenyi, Liang Zheng, Zhang Weidong
School of Information Engineering, Henan Institute of Science and Technology, Xinxiang, China.
School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
Front Plant Sci. 2023 Dec 22;14:1304962. doi: 10.3389/fpls.2023.1304962. eCollection 2023.
Efficient and accurate varietal classification of wheat grains is crucial for maintaining varietal purity and reducing susceptibility to pests and diseases, thereby enhancing crop yield. Traditional manual and machine learning methods for wheat grain identification often suffer from inefficiencies and the use of large models. In this study, we propose a novel classification and recognition model called SCGNet, designed for rapid and efficient wheat grain classification.
Specifically, our proposed model incorporates several modules that enhance information exchange and feature multiplexing between group convolutions. This mechanism enables the network to gather feature information from each subgroup of the previous layer, facilitating effective utilization of upper-layer features. Additionally, we introduce sparsity in channel connections between groups to further reduce computational complexity without compromising accuracy. Furthermore, we design a novel classification output layer based on 3-D convolution, replacing the traditional maximum pooling layer and fully connected layer in conventional convolutional neural networks (CNNs). This modification results in more efficient classification output generation.
We conduct extensive experiments using a curated wheat grain dataset, demonstrating the superior performance of our proposed method. Our approach achieves an impressive accuracy of 99.56%, precision of 99.59%, recall of 99.55%, and an -score of 99.57%.
Notably, our method also exhibits the lowest number of Floating-Point Operations (FLOPs) and the number of parameters, making it a highly efficient solution for wheat grains classification.
小麦籽粒高效准确的品种分类对于保持品种纯度、降低病虫害易感性从而提高作物产量至关重要。传统的小麦籽粒识别手工方法和机器学习方法往往效率低下且使用大型模型。在本研究中,我们提出了一种名为SCGNet的新型分类识别模型,旨在实现小麦籽粒的快速高效分类。
具体而言,我们提出的模型包含多个模块,这些模块增强了组卷积之间的信息交换和特征复用。这种机制使网络能够从上层的每个子组收集特征信息,便于有效利用上层特征。此外,我们在组间的通道连接中引入稀疏性,以在不影响准确性的情况下进一步降低计算复杂度。此外,我们基于三维卷积设计了一种新型分类输出层,取代了传统卷积神经网络(CNN)中的传统最大池化层和全连接层。这种修改使得分类输出生成更加高效。
我们使用精心整理的小麦籽粒数据集进行了广泛实验,证明了我们提出的方法具有卓越性能。我们的方法实现了令人印象深刻的99.56%的准确率、99.59%的精确率、99.55%的召回率以及99.57%的F1分数。
值得注意的是,我们的方法还展示了最低的浮点运算次数(FLOPs)和参数数量,使其成为小麦籽粒分类的高效解决方案。