Suppr超能文献

用于西尼罗河病毒预测的虫媒病毒图谱与预测(ArboMAP)系统。

The Arbovirus Mapping and Prediction (ArboMAP) system for West Nile virus forecasting.

作者信息

Nekorchuk Dawn M, Bharadwaja Anita, Simonson Sean, Ortega Emma, França Caio M B, Dinh Emily, Reik Rebecca, Burkholder Rachel, Wimberly Michael C

机构信息

Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK 73019, United States.

South Dakota Department of Health, Pierre, SD 57501, United States.

出版信息

JAMIA Open. 2023 Dec 21;7(1):ooad110. doi: 10.1093/jamiaopen/ooad110. eCollection 2024 Apr.

Abstract

OBJECTIVES

West Nile virus (WNV) is the most common mosquito-borne disease in the United States. Predicting the location and timing of outbreaks would allow targeting of disease prevention and mosquito control activities. Our objective was to develop software (ArboMAP) for routine WNV forecasting using public health surveillance data and meteorological observations.

MATERIALS AND METHODS

ArboMAP was implemented using an R markdown script for data processing, modeling, and report generation. A Google Earth Engine application was developed to summarize and download weather data. Generalized additive models were used to make county-level predictions of WNV cases.

RESULTS

ArboMAP minimized the number of manual steps required to make weekly forecasts, generated information that was useful for decision-makers, and has been tested and implemented in multiple public health institutions.

DISCUSSION AND CONCLUSION

Routine prediction of mosquito-borne disease risk is feasible and can be implemented by public health departments using ArboMAP.

摘要

目标

西尼罗河病毒(WNV)是美国最常见的蚊媒疾病。预测疫情的地点和时间将有助于针对性地开展疾病预防和蚊虫控制活动。我们的目标是开发一款软件(ArboMAP),利用公共卫生监测数据和气象观测进行西尼罗河病毒的常规预测。

材料与方法

ArboMAP通过一个R markdown脚本实现数据处理、建模和报告生成。开发了一个谷歌地球引擎应用程序来汇总和下载气象数据。使用广义相加模型对县级西尼罗河病毒病例进行预测。

结果

ArboMAP将每周预测所需的人工步骤数量减至最少,生成了对决策者有用的信息,并已在多个公共卫生机构进行了测试和应用。

讨论与结论

蚊媒疾病风险的常规预测是可行的,公共卫生部门可使用ArboMAP来实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f5d/10766066/b8a0029827a7/ooad110f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验