Ramos-Medina María José, Echeverría-Garcés Gabriela, Kyriakidis Nikolaos C, León Cáceres Ángela, Ortiz-Prado Esteban, Bautista Jhommara, Pérez-Meza Álvaro A, Abad-Sojos Andrea, Nieto-Jaramillo Karol, Espinoza-Ferrao Samantha, Ocaña-Paredes Belén, López-Cortés Andrés
German Cancer Research Center (DKFZ), Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
Centro de Referencia Nacional de Genómica, Secuenciación y Bioinformática, Instituto Nacional de Investigación en Salud Pública "Leopoldo Izquieta Pérez", Quito, Ecuador.
Heliyon. 2023 Dec 14;10(1):e23682. doi: 10.1016/j.heliyon.2023.e23682. eCollection 2024 Jan 15.
Cardiovascular diseases are the leading cause of death worldwide, with heart failure being a complex condition that affects millions of individuals. Single-nucleus RNA sequencing has recently emerged as a powerful tool for unraveling the molecular mechanisms behind cardiovascular diseases. This cutting-edge technology enables the identification of molecular signatures, intracellular networks, and spatial relationships among cardiac cells, including cardiomyocytes, mast cells, lymphocytes, macrophages, lymphatic endothelial cells, endocardial cells, endothelial cells, epicardial cells, adipocytes, fibroblasts, neuronal cells, pericytes, and vascular smooth muscle cells. Despite these advancements, the discovery of essential therapeutic targets and drugs for precision cardiology remains a challenge. To bridge this gap, we conducted comprehensive analyses of single-nucleus RNA sequencing data, functional enrichment, protein interactome network, and identification of the shortest pathways to physiological phenotypes. This integrated multi-omics analysis generated CardiOmics signatures, which allowed us to pinpoint three therapeutically actionable targets (ADRA1A1, PPARG, and ROCK2) and 15 effective drugs, including adrenergic receptor agonists, adrenergic receptor antagonists, norepinephrine precursors, PPAR receptor agonists, and Rho-associated kinase inhibitors, involved in late-stage cardiovascular disease clinical trials.
心血管疾病是全球主要的死亡原因,心力衰竭是一种影响数百万人的复杂病症。单细胞核RNA测序最近已成为揭示心血管疾病背后分子机制的有力工具。这项前沿技术能够识别心脏细胞(包括心肌细胞、肥大细胞、淋巴细胞、巨噬细胞、淋巴管内皮细胞、心内膜细胞、内皮细胞、心外膜细胞、脂肪细胞、成纤维细胞、神经元细胞、周细胞和血管平滑肌细胞)之间的分子特征、细胞内网络和空间关系。尽管取得了这些进展,但发现精准心脏病学的关键治疗靶点和药物仍然是一项挑战。为了弥补这一差距,我们对单细胞核RNA测序数据、功能富集、蛋白质相互作用组网络以及通往生理表型的最短途径进行了全面分析。这种综合的多组学分析产生了心脏组学特征,使我们能够确定三个具有治疗可行性的靶点(ADRA1A1、PPARG和ROCK2)和15种有效药物,包括参与晚期心血管疾病临床试验的肾上腺素能受体激动剂、肾上腺素能受体拮抗剂、去甲肾上腺素前体、PPAR受体激动剂和Rho相关激酶抑制剂。