Suppr超能文献

JASPER:在结构化样本中进行快速、强大的多性状关联测试,可深入了解基因表达中的多效性。

JASPER: fast, powerful, multitrait association testing in structured samples gives insight on pleiotropy in gene expression.

作者信息

Mbatchou Joelle, McPeek Mary Sara

机构信息

Regeneron Genetics Center, Tarrytown, NY 10591, USA.

Department of Statistics, The University of Chicago, Chicago, IL 60637, USA.

出版信息

bioRxiv. 2023 Dec 19:2023.12.18.571948. doi: 10.1101/2023.12.18.571948.

Abstract

Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits and microbiome abundances. It allows for covariates, ascertainment and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, some of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.

摘要

多个遗传变异与多个性状的联合关联分析可以深入了解遗传结构和多效性,改善性状预测,并提高检测关联的效能。此外,一些性状天然是高维的,例如图像、网络或纵向测量的性状。评估多性状遗传关联的显著性可能具有挑战性,尤其是当样本存在群体亚结构和/或相关个体时。未能充分调整样本结构可能导致效能损失和1型错误膨胀,而常用的评估显著性的方法在面对大量性状时可能效果不佳,或者计算速度较慢。我们开发了JASPER,这是一种快速、强大且稳健的方法,用于在存在群体亚结构、混合和/或相关性的样本中评估一组遗传变异与多性状关联的显著性。在模拟中,JASPER比现有方法具有更高的效能、更好的1型错误控制和更快的计算速度,且JASPER的效能和速度优势会随着性状数量的增加而增大。JASPER可能适用于广泛的关联测试应用,包括多种疾病性状、表达性状、图像衍生性状和微生物组丰度。它允许纳入协变量、确定和罕见变异,并且对表型模型的错误设定具有稳健性。我们应用JASPER分析弗雷明汉心脏研究中的基因表达,与其他方法相比,JASPER发现了更多显著关联,包括一些表明多效性效应的关联,其中一些重复了先前的结果,而其他一些则以前未被报道过。我们的结果证明了JASPER在结构化样本中进行强大的多性状分析的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3154/10769254/cc05a79b62aa/nihpp-2023.12.18.571948v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验