Suppr超能文献

揭示纤维素材料中的水分传输机制:蒸汽与结合水

Unveiling moisture transport mechanisms in cellulosic materials: Vapor vs. bound water.

作者信息

Zou Yuliang, Maillet Benjamin, Brochard Laurent, Coussot Philippe

机构信息

Laboratoire Navier, Univ. Gustave Eiffel, ENPC, CNRS, 77420 Champs sur Marne, France.

出版信息

PNAS Nexus. 2023 Dec 20;3(1):pgad450. doi: 10.1093/pnasnexus/pgad450. eCollection 2024 Jan.

Abstract

Natural textiles, hair, paper, wool, or bio-based walls possess the remarkable ability to store humidity from sweat or the environment through "bound water" absorption within nanopores, constituting up to 30% of their dry mass. The knowledge of the induced water transfers is pivotal for advancing industrial processes and sustainable practices in various fields such as wood drying, paper production and use, moisture transfers in clothes or hair, humidity regulation of bio-based construction materials, etc. However, the transport and storage mechanisms of this moisture remain poorly understood, with modeling often relying on an assumption of dominant vapor transport with an unknown diffusion coefficient. Our research addresses this knowledge gap, demonstrating the pivotal role of bound water transport within interconnected fiber networks. Notably, at low porosity, bound water diffusion dominates over vapor diffusion. By isolating diffusion processes and deriving diffusion coefficients through rigorous experimentation, we establish a comprehensive model for moisture transfer. Strikingly, our model accurately predicts the evolution of bound water's spatial distribution for a wide range of sample porosities, as verified through magnetic resonance imaging. Showing that bound water transport can be dominant over vapor transport, this work offers a change of paradigm and unprecedented control over humidity-related processes.

摘要

天然纺织品、毛发、纸张、羊毛或生物基墙面具有非凡的能力,能够通过纳米孔内的“结合水”吸收作用,从汗液或环境中储存湿度,结合水占其干质量的比例高达30%。了解诱导水转移对于推进工业过程以及木材干燥、纸张生产与使用、衣物或毛发中的水分转移、生物基建筑材料的湿度调节等各个领域的可持续实践至关重要。然而,这种水分的传输和储存机制仍知之甚少,建模通常依赖于具有未知扩散系数的主导蒸汽传输假设。我们的研究填补了这一知识空白,证明了结合水在相互连接的纤维网络中传输的关键作用。值得注意的是,在低孔隙率下,结合水扩散比蒸汽扩散更为显著。通过分离扩散过程并通过严格的实验得出扩散系数,我们建立了一个全面的水分转移模型。令人惊讶的是,通过磁共振成像验证,我们的模型能够准确预测各种样品孔隙率下结合水空间分布的演变。这项工作表明结合水传输可以比蒸汽传输更为显著,为湿度相关过程带来了范式转变和前所未有的控制能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffef/10768996/25189a238c88/pgad450f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验