Suppr超能文献

基于磁共振成像放射组学的多种机器学习模型鉴别睾丸良恶性病变的比较与分析

Comparison and analysis of multiple machine learning models for discriminating benign and malignant testicular lesions based on magnetic resonance imaging radiomics.

作者信息

Feng Yanhui, Feng Zhaoyan, Wang Liang, Lv Wenzhi, Liu Zhiyong, Min Xiangde, Li Jin, Zhang Jiaxuan

机构信息

School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China.

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Med (Lausanne). 2023 Dec 21;10:1279622. doi: 10.3389/fmed.2023.1279622. eCollection 2023.

Abstract

OBJECTIVE

Accurate identification of testicular tumors through better lesion characterization can optimize the radical surgical procedures. Here, we compared the performance of different machine learning approaches for discriminating benign testicular lesions from malignant ones, using a radiomics score derived from magnetic resonance imaging (MRI).

METHODS

One hundred fifteen lesions from 108 patients who underwent MRI between February 2014 and July 2022 were enrolled in this study. Based on regions-of-interest, radiomics features extraction can be realized through PyRadiomics. For measuring feature reproducibility, we considered both intraclass and interclass correlation coefficients. We calculated the correlation between each feature and the predicted target, removing redundant features. In our radiomics-based analysis, we trained classifiers on 70% of the lesions and compared different models, including linear discrimination, gradient boosting, and decision trees. We applied each classification algorithm to the training set using different random seeds, repeating this process 10 times and recording performance. The highest-performing model was then tested on the remaining 30% of the lesions. We used widely accepted metrics, such as the area under the curve (AUC), to evaluate model performance.

RESULTS

We acquired 1,781 radiomic features from the T2-weighted maps of each lesion. Subsequently, we constructed classification models using the top 10 most significant features. The 10 machine-learning algorithms we utilized were capable of diagnosing testicular lesions. Of these, the XGBoost classification emerged as the most superior, achieving the highest AUC value of 0.905 (95% confidence interval: 0.886-0.925) on the testing set and outstripping the other models that typically scored AUC values between 0.697-0.898.

CONCLUSION

Preoperative MRI radiomics offers potential for distinguishing between benign and malignant testicular lesions. An ensemble model like the boosting algorithm embodied by XGBoost may outperform other models.

摘要

目的

通过更好地对病变进行特征描述来准确识别睾丸肿瘤,可优化根治性手术程序。在此,我们使用从磁共振成像(MRI)得出的放射组学评分,比较了不同机器学习方法区分良性和恶性睾丸病变的性能。

方法

本研究纳入了2014年2月至2022年7月期间接受MRI检查的108例患者的115个病变。基于感兴趣区域,可通过PyRadiomics实现放射组学特征提取。为测量特征可重复性,我们考虑了组内和组间相关系数。我们计算了每个特征与预测目标之间的相关性,去除冗余特征。在我们基于放射组学的分析中,我们在70%的病变上训练分类器,并比较了不同模型,包括线性判别、梯度提升和决策树。我们使用不同的随机种子将每种分类算法应用于训练集,重复此过程10次并记录性能。然后在其余30%的病变上测试性能最佳的模型。我们使用广泛接受的指标,如曲线下面积(AUC),来评估模型性能。

结果

我们从每个病变的T2加权图中获取了1781个放射组学特征。随后,我们使用最重要的前10个特征构建了分类模型。我们使用的10种机器学习算法能够诊断睾丸病变。其中,XGBoost分类表现最为出色,在测试集上实现了最高的AUC值0.905(95%置信区间:0.886 - 0.925),超过了其他通常AUC值在0.697 - 0.898之间的模型。

结论

术前MRI放射组学在区分良性和恶性睾丸病变方面具有潜力。像XGBoost所体现的提升算法这样的集成模型可能优于其他模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7143/10768048/c5e2671f0a59/fmed-10-1279622-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验