Suppr超能文献

基于机器学习的放射组学预测胶质瘤的肿瘤分级和多种病理生物标志物的表达

Machine Learning-Based Radiomics Predicting Tumor Grades and Expression of Multiple Pathologic Biomarkers in Gliomas.

作者信息

Gao Min, Huang Siying, Pan Xuequn, Liao Xuan, Yang Ru, Liu Jun

机构信息

Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China.

School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.

出版信息

Front Oncol. 2020 Sep 11;10:1676. doi: 10.3389/fonc.2020.01676. eCollection 2020.

Abstract

BACKGROUND

The grading and pathologic biomarkers of glioma has important guiding significance for the individual treatment. In clinical, it is often necessary to obtain tumor samples through invasive operation for pathological diagnosis. The present study aimed to use conventional machine learning algorithms to predict the tumor grades and pathologic biomarkers on magnetic resonance imaging (MRI) data.

METHODS

The present study retrospectively collected a dataset of 367 glioma patients, who had pathological reports and underwent MRI scans between October 2013 and March 2019. The radiomic features were extracted from enhanced MRI images, and three frequently-used machine-learning models of LC, Support Vector Machine (SVM), and Random Forests (RF) were built for four predictive tasks: (1) glioma grades, (2) Ki67 expression level, (3) GFAP expression level, and (4) S100 expression level in gliomas. Each sub dataset was split into training and testing sets at a ratio of 4:1. The training sets were used for training and tuning models. The testing sets were used for evaluating models. According to the area under curve (AUC) and accuracy, the best classifier was chosen for each task.

RESULTS

The RF algorithm was found to be stable and consistently performed better than Logistic Regression and SVM for all the tasks. The RF classifier on glioma grades achieved a predictive performance (AUC: 0.79, accuracy: 0.81). The RF classifier also achieved a predictive performance on the Ki67 expression (AUC: 0.85, accuracy: 0.80). The AUC and accuracy score for the GFAP classifier were 0.72 and 0.81. The AUC and accuracy score for S100 expression levels are 0.60 and 0.91.

CONCLUSION

The machine-learning based radiomics approach can provide a non-invasive method for the prediction of glioma grades and expression levels of multiple pathologic biomarkers, preoperatively, with favorable predictive accuracy and stability.

摘要

背景

胶质瘤的分级和病理生物标志物对个体化治疗具有重要的指导意义。在临床上,通常需要通过侵入性手术获取肿瘤样本进行病理诊断。本研究旨在使用传统机器学习算法,基于磁共振成像(MRI)数据预测肿瘤分级和病理生物标志物。

方法

本研究回顾性收集了367例胶质瘤患者的数据集,这些患者有病理报告,并于2013年10月至2019年3月期间接受了MRI扫描。从增强MRI图像中提取放射组学特征,并构建了逻辑回归(LC)、支持向量机(SVM)和随机森林(RF)这三种常用的机器学习模型,用于四个预测任务:(1)胶质瘤分级,(2)Ki67表达水平,(3)胶质纤维酸性蛋白(GFAP)表达水平,(4)胶质瘤中S100表达水平。每个子数据集按4:1的比例分为训练集和测试集。训练集用于训练和调整模型。测试集用于评估模型。根据曲线下面积(AUC)和准确率,为每个任务选择最佳分类器。

结果

发现RF算法稳定,在所有任务中表现均优于逻辑回归和SVM。胶质瘤分级的RF分类器实现了预测性能(AUC:0.79,准确率:0.81)。RF分类器在Ki67表达方面也实现了预测性能(AUC:0.85,准确率:0.80)。GFAP分类器的AUC和准确率得分分别为0.72和0.81。S100表达水平的AUC和准确率得分分别为0.60和0.91。

结论

基于机器学习的放射组学方法可以为术前预测胶质瘤分级和多种病理生物标志物的表达水平提供一种非侵入性方法,具有良好的预测准确性和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131e/7516282/6700f0aea82f/fonc-10-01676-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验