Kim TaeYeong, Salazar Fajardo Jhosedyn Carolaym, Jang Hanna, Lee Juwon, Kim Yeonkyung, Kim Gowun, Kim Donghyeon
Research Institute, Neurophet Inc., Seoul, Republic of Korea.
Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea.
Front Neurosci. 2023 Dec 21;17:1328727. doi: 10.3389/fnins.2023.1328727. eCollection 2023.
Transcranial direct current stimulation (tDCS) has shown positive but inconsistent results in stroke rehabilitation. This could be attributed to inter-individual variations in brain characteristics and stroke lesions, which limit the use of a single tDCS protocol for all post-stroke patients. Optimizing the electrode location in tDCS for each individual using magnetic resonance imaging (MRI) to generate three-dimensional computer models and calculate the electric field (E-field) induced by tDCS at a specific target point in the primary motor cortex may help reduce these inconsistencies. In stroke rehabilitation, locating the optimal position that generates a high E-field in a target area can influence motor recovery. Therefore, this study was designed to determine the effect of personalized tDCS electrode positions on hand-knob activation in post-stroke patients.
This is a crossover study with a sample size of 50 participants, who will be randomly assigned to one of six groups and will receive one session of either optimized-active, conventional-active, or sham tDCS, with 24 h between sessions. The tDCS parameters will be 1 mA (5 × 5 cm electrodes) for 20 min. The motor-evoked potential (MEP) will be recorded before and after each session over the target area (motor cortex hand-knob) and the MEP hotspot. The MEP amplitude at the target location will be the primary outcome.
We hypothesize that the optimized-active tDCS session would show a greater increase in MEP amplitude over the target area in patients with subacute and chronic stroke than conventional and sham tDCS sessions. https://cris.nih.go.kr, identifier KCT0007536.
经颅直流电刺激(tDCS)在中风康复中已显示出积极但不一致的结果。这可能归因于个体大脑特征和中风损伤的差异,这限制了对所有中风后患者使用单一的tDCS方案。使用磁共振成像(MRI)为每个个体优化tDCS中的电极位置,以生成三维计算机模型并计算tDCS在初级运动皮层特定目标点处感应的电场(E场),可能有助于减少这些不一致性。在中风康复中,在目标区域找到产生高E场的最佳位置会影响运动恢复。因此,本研究旨在确定个性化tDCS电极位置对中风后患者手部旋钮激活的影响。
这是一项交叉研究,样本量为50名参与者,他们将被随机分配到六个组中的一组,并将接受一次优化-活性、传统-活性或假tDCS治疗,两次治疗之间间隔24小时。tDCS参数为1 mA(5×5 cm电极),持续20分钟。每次治疗前后将在目标区域(运动皮层手部旋钮)和MEP热点记录运动诱发电位(MEP)。目标位置的MEP振幅将是主要结果。
我们假设,与传统和假tDCS治疗相比,优化-活性tDCS治疗在亚急性和慢性中风患者的目标区域MEP振幅增加更大。https://cris.nih.go.kr,标识符KCT0007536。