Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands; Radboud University Medical Center, dept. of Rehabilitation, Reinier Postlaan 2, 6525 GC, Nijmegen, The Netherlands.
Erasmus MC, University Medical Center Rotterdam, dept. of Rehabilitation Medicine, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands; Delft University of Technology, dept. of Biomechanical Engineering, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Neuroimage Clin. 2022;36:103178. doi: 10.1016/j.nicl.2022.103178. Epub 2022 Aug 29.
Transcranial direct current stimulation (tDCS) is a promising tool to improve and speed up motor rehabilitation after stroke, but inconsistent clinical effects refrain tDCS from clinical implementation. Therefore, this study aimed to assess the need for individualized tDCS configurations in stroke, considering interindividual variability in brain anatomy and motor function representation. We simulated tDCS in individualized MRI-based finite element head models of 21 chronic stroke subjects and 10 healthy age-matched controls. An anatomy-based stimulation target, i.e. the motor hand knob, was identified with MRI, whereas a motor function-based stimulation target was identified with EEG. For each subject, we simulated conventional anodal tDCS electrode configurations and optimized electrode configurations to maximize stimulation strength within the anatomical and functional target. The normal component of the electric field was extracted and compared between subjects with stroke and healthy, age-matched controls, for both targets, during conventional and optimized tDCS. Electrical field strength was significantly lower, more variable and more frequently in opposite polarity for subjects with stroke compared to healthy age-matched subjects, both for the anatomical and functional target with conventional, i.e. non-individualized, electrode configurations. Optimized, i.e. individualized, electrode configurations increased the electrical field strength in the anatomical and functional target for subjects with stroke but did not reach the same levels as in healthy subjects. Considering individual brain structure and motor function is crucial for applying tDCS in subjects with stroke. Lack of individualized tDCS configurations in subjects with stroke results in lower electric fields in stimulation targets, which may partially explain the inconsistent clinical effects of tDCS in stroke trials.
经颅直流电刺激(tDCS)是一种很有前途的工具,可以改善和加速中风后的运动康复,但由于临床效果不一致,tDCS 尚未在临床上得到应用。因此,本研究旨在评估考虑到个体间大脑解剖结构和运动功能表现的个体差异,个体化 tDCS 配置在中风中的必要性。我们对 21 名慢性中风患者和 10 名年龄匹配的健康对照者的个体化基于 MRI 的有限元头部模型进行了 tDCS 模拟。使用 MRI 确定基于解剖结构的刺激靶点,即运动手旋钮,而使用 EEG 确定基于运动功能的刺激靶点。对于每个受试者,我们模拟了常规的阳极 tDCS 电极配置,并对电极配置进行了优化,以最大限度地提高解剖结构和功能靶点内的刺激强度。从解剖结构和功能靶点两个方面,提取了正常电场分量,并将中风患者和健康年龄匹配对照组的受试者之间进行了比较,比较了传统和优化 tDCS 时的两种靶点。与健康年龄匹配的对照组相比,中风患者的电场强度明显更低、更具变异性,且更频繁地出现相反极性,无论是使用传统的(即非个体化)电极配置还是优化的(即个体化)电极配置,都是如此。对于中风患者,优化后的(即个体化的)电极配置增加了解剖结构和功能靶点的电场强度,但并未达到健康受试者的水平。考虑到个体的大脑结构和运动功能对于在中风患者中应用 tDCS 至关重要。中风患者中缺乏个体化的 tDCS 配置会导致刺激靶点中的电场强度降低,这可能部分解释了 tDCS 在中风试验中的不一致临床效果。