Suppr超能文献

ZCHSound:具有先天性心脏病的浙江大学儿科心音数据库开源项目

ZCHSound: Open-Source ZJU Paediatric Heart Sound Database With Congenital Heart Disease.

作者信息

Jia Weijie, Wang Yunyan, Chen Renwei, Ye Jingjing, Li Die, Yin Fei, Yu Jin, Chen Jiajia, Shu Qiang, Xu Weize

出版信息

IEEE Trans Biomed Eng. 2024 Aug;71(8):2278-2286. doi: 10.1109/TBME.2023.3348800. Epub 2024 Jul 18.

Abstract

UNLABELLED

Congenital heart disease (CHD) is a common birth defect in children. Intelligent auscultation algorithms have been proven to reduce the subjectivity of diagnoses and alleviate the workload of doctors. However, the development of this algorithm has been limited by the lack of reliable, standardized, and publicly available pediatric heart sound databases. Therefore, the objective of this research is to develop a large-scale, high-standard, high-quality, and accurately labeled pediatric CHD heart sound database.

METHOD

From 2020 to 2022, we collaborated with experienced cardiac surgeons from three general children's hospitals to collect heart sound signals from 1259 participants using electronic stethoscopes. To ensure the accuracy of the labels, the labels for all data were confirmed by two cardiac experts. To establish the baseline of ZCHsound, we extracted 84 features and used machine learning models to evaluate the performance of the classification task.

RESULTS

The ZCHSound database was divided into two datasets: one is a high-quality, filtered clean heart sound dataset, and the other is a low-quality, noisy heart sound dataset. In the evaluation of the high-quality dataset, our random forest ensemble model achieved an F1 score of 90.3% in the classification task of normal and pathological heart sounds.

CONCLUSION

This study has successfully established a large-scale, high-quality, rigorously standardized pediatric CHD sound database with precise disease diagnosis. This database not only provides important learning resources for clinical doctors in auscultation knowledge but also offers valuable data support for algorithm engineers in developing intelligent auscultation algorithms.

摘要

未标注

先天性心脏病(CHD)是儿童常见的出生缺陷。智能听诊算法已被证明可降低诊断的主观性并减轻医生的工作量。然而,该算法的发展受到缺乏可靠、标准化且公开可用的儿科心音数据库的限制。因此,本研究的目的是开发一个大规模、高标准、高质量且标注准确的儿科先天性心脏病心音数据库。

方法

2020年至2022年,我们与三家综合儿童医院经验丰富的心脏外科医生合作,使用电子听诊器从1259名参与者收集心音信号。为确保标签的准确性,所有数据的标签均由两名心脏专家确认。为建立ZCHsound的基线,我们提取了84个特征,并使用机器学习模型评估分类任务的性能。

结果

ZCHSound数据库分为两个数据集:一个是高质量、经过滤波的干净心音数据集,另一个是低质量、有噪声的心音数据集。在对高质量数据集的评估中,我们的随机森林集成模型在正常和病理性心音的分类任务中F1分数达到90.3%。

结论

本研究成功建立了一个大规模、高质量、严格标准化且疾病诊断精确的儿科先天性心脏病心音数据库。该数据库不仅为临床医生提供了听诊知识方面重要的学习资源,也为算法工程师开发智能听诊算法提供了有价值的数据支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验