Suppr超能文献

用于循环成像自动细胞分析的深度学习管道

Deep Learning Pipeline for Automated Cell Profiling from Cyclic Imaging.

作者信息

Landeros Christian, Oh Juhyun, Weissleder Ralph, Lee Hakho

机构信息

Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA.

Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Res Sq. 2023 Dec 18:rs.3.rs-3745061. doi: 10.21203/rs.3.rs-3745061/v1.

Abstract

Recent advances in microscopy allow scientists to generate vast amounts of biological data from a single biopsy sample. Cyclic fluorescence microscopy, in particular, enables multiple targets to be detected simultaneously. This, in turn, has deepened our understanding of tissue composition, cell-to-cell interactions, and cell signaling. Unfortunately, analysis of these datasets can be time-prohibitive due to the sheer volume of data. In this paper, we present CycloNET, a computational pipeline tailored for analyzing raw fluorescent images obtained through cyclic immunofluorescence. The automated pipeline pre-processes raw image files, quickly corrects for translation errors between imaging cycles, and leverages a pre-trained neural network to segment individual cells and generate single-cell molecular profiles. We applied CycloNET to a dataset of 22 human samples from head and neck squamous cell carcinoma patients and trained a neural network to segment immune cells. CycloNET efficiently processed a large-scale dataset (17 fields of view per cycle and 13 staining cycles per specimen) in 10 minutes, delivering insights at the single-cell resolution and facilitating the identification of rare immune cell clusters. We expect that this rapid pipeline will serve as a powerful tool to understand complex biological systems at the cellular level, with the potential to facilitate breakthroughs in areas such as developmental biology, disease pathology, and personalized medicine.

摘要

显微镜技术的最新进展使科学家能够从单个活检样本中生成大量生物数据。特别是循环荧光显微镜,能够同时检测多个靶点。这反过来又加深了我们对组织组成、细胞间相互作用和细胞信号传导的理解。不幸的是,由于数据量巨大,对这些数据集的分析可能非常耗时。在本文中,我们介绍了CycloNET,这是一种专门用于分析通过循环免疫荧光获得的原始荧光图像的计算流程。该自动化流程对原始图像文件进行预处理,快速校正成像周期之间的平移误差,并利用预训练的神经网络对单个细胞进行分割并生成单细胞分子图谱。我们将CycloNET应用于来自头颈鳞状细胞癌患者的22个人类样本数据集,并训练神经网络对免疫细胞进行分割。CycloNET在10分钟内高效处理了一个大规模数据集(每个周期17个视野,每个样本13个染色周期),以单细胞分辨率提供见解,并有助于识别罕见的免疫细胞簇。我们预计,这种快速流程将成为在细胞水平上理解复杂生物系统的强大工具,有可能促进发育生物学、疾病病理学和个性化医学等领域的突破。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0743/10775369/2eb39aeaec33/nihpp-rs3745061v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验