Suppr超能文献

从循环成像中自动进行细胞分析的深度学习管道。

Deep learning pipeline for automated cell profiling from cyclic imaging.

机构信息

Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA.

Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Sci Rep. 2024 Oct 9;14(1):23600. doi: 10.1038/s41598-024-74597-w.

Abstract

Cyclic fluorescence microscopy enables multiple targets to be detected simultaneously. This, in turn, has deepened our understanding of tissue composition, cell-to-cell interactions, and cell signaling. Unfortunately, analysis of these datasets can be time-prohibitive due to the sheer volume of data. In this paper, we present CycloNET, a computational pipeline tailored for analyzing raw fluorescent images obtained through cyclic immunofluorescence. The automated pipeline pre-processes raw image files, quickly corrects for translation errors between imaging cycles, and leverages a pre-trained neural network to segment individual cells and generate single-cell molecular profiles. We applied CycloNET to a dataset of 22 human samples from head and neck squamous cell carcinoma patients and trained a neural network to segment immune cells. CycloNET efficiently processed a large-scale dataset (17 fields of view per cycle and 13 staining cycles per specimen) in 10 min, delivering insights at the single-cell resolution and facilitating the identification of rare immune cell clusters. We expect that this rapid pipeline will serve as a powerful tool to understand complex biological systems at the cellular level, with the potential to facilitate breakthroughs in areas such as developmental biology, disease pathology, and personalized medicine.

摘要

循环荧光显微镜能够同时检测多个靶点。这反过来又加深了我们对组织成分、细胞间相互作用和细胞信号转导的理解。不幸的是,由于数据量庞大,分析这些数据集可能非常耗时。在本文中,我们提出了 CycloNET,这是一个专门针对分析通过循环免疫荧光获得的原始荧光图像的计算管道。该自动化管道预处理原始图像文件,快速纠正成像周期之间的平移误差,并利用预先训练的神经网络对单个细胞进行分割并生成单细胞分子谱。我们将 CycloNET 应用于来自头颈鳞状细胞癌患者的 22 个人类样本数据集,并训练了一个神经网络来分割免疫细胞。CycloNET 能够在 10 分钟内高效处理大规模数据集(每个周期 17 个视野,每个样本 13 个染色周期),提供单细胞分辨率的见解,并有助于识别罕见的免疫细胞簇。我们预计,这个快速管道将成为理解细胞水平复杂生物系统的有力工具,并有可能在发育生物学、疾病病理学和个性化医学等领域取得突破。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387b/11464789/806c81aad942/41598_2024_74597_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验