Pierre-Jean Morgane, Marut Benjamin, Curtis Elizabeth, Galli Elena, Cuggia Marc, Bouzillé Guillaume, Donal Erwan
CHU Rennes, Inserm, University of Rennes, LTSI-UMR 1099, hopital Pontchaillou, rue Henri Le Guillou, 35000 Rennes, France.
Eur Heart J Open. 2023 Dec 14;4(1):oead133. doi: 10.1093/ehjopen/oead133. eCollection 2024 Jan.
Patients presenting symptoms of heart failure with preserved ejection fraction (HFpEF) are not a homogenous population. Different phenotypes can differ in prognosis and optimal management strategies. We sought to identify phenotypes of HFpEF by using the medical information database from a large university hospital centre using machine learning.
We explored the use of clinical variables from electronic health records in addition to echocardiography to identify different phenotypes of patients with HFpEF. The proposed methodology identifies four phenotypic clusters based on both clinical and echocardiographic characteristics, which have differing prognoses (death and cardiovascular hospitalization).
This work demonstrated that artificial intelligence-derived phenotypes could be used as a tool for physicians to assess risk and to target therapies that may improve outcomes.
射血分数保留的心力衰竭(HFpEF)患者并非同质群体。不同表型在预后和最佳管理策略方面可能存在差异。我们试图通过使用大型大学医院中心的医学信息数据库并运用机器学习来识别HFpEF的表型。
除了超声心动图之外,我们还探索利用电子健康记录中的临床变量来识别HFpEF患者的不同表型。所提出的方法基于临床和超声心动图特征识别出四个表型聚类,它们具有不同的预后(死亡和心血管住院)。
这项工作表明,人工智能衍生的表型可作为医生评估风险和靶向可能改善预后的治疗方法的工具。