Suppr超能文献

参与移动健康酒精干预:用户对应用程序或聊天机器人提供的减少饮酒计划的看法。

Engagement with mHealth Alcohol Interventions: User Perspectives on an App or Chatbot-Delivered Program to Reduce Drinking.

作者信息

Sedotto Robyn N M, Edwards Alexandra E, Dulin Patrick L, King Diane K

机构信息

Center for Behavioral Health Research and Services, University of Alaska Anchorage, Anchorage, AK 99508, USA.

Department of Psychology, University of Alaska Anchorage, Anchorage, AK 99508, USA.

出版信息

Healthcare (Basel). 2024 Jan 2;12(1):101. doi: 10.3390/healthcare12010101.

Abstract

Research suggests participant engagement is a key mediator of mHealth alcohol interventions' effectiveness in reducing alcohol consumption among users. Understanding the features that promote engagement is critical to maximizing the effectiveness of mHealth-delivered alcohol interventions. The purpose of this study was to identify facilitators and barriers to mHealth alcohol intervention utilization among hazardous-drinking participants who were randomized to use either an app (Step Away) or Artificial Intelligence (AI) chatbot-based intervention for reducing drinking (the Step Away chatbot). We conducted semi-structured interviews from December 2019 to January 2020 with 20 participants who used the app or chatbot for three months, identifying common facilitators and barriers to use. Participants of both interventions reported that tracking their drinking, receiving feedback about their drinking, feeling held accountable, notifications about high-risk drinking times, and reminders to track their drinking promoted continued engagement. Positivity, personalization, gaining insight into their drinking, and daily tips were stronger facilitator themes among bot users, indicating these may be strengths of the AI chatbot-based intervention when compared to a user-directed app. While tracking drinking was a theme among both groups, it was more salient among app users, potentially due to the option to quickly track drinks in the app that was not present with the conversational chatbot. Notification glitches, technology glitches, and difficulty with tracking drinking data were usage barriers for both groups. Lengthy setup processes were a stronger barrier for app users. Repetitiveness of the bot conversation, receipt of non-tailored daily tips, and inability to self-navigate to desired content were reported as barriers by bot users. To maximize engagement with AI interventions, future developers should include tracking to reinforce behavior change self-monitoring and be mindful of repetitive conversations, lengthy setup, and pathways that limit self-directed navigation.

摘要

研究表明,参与者的参与度是移动健康酒精干预措施在减少用户酒精消费方面有效性的关键调节因素。了解促进参与的特征对于最大限度地提高移动健康酒精干预措施的有效性至关重要。本研究的目的是确定在随机使用应用程序(远离)或基于人工智能(AI)聊天机器人的干预措施(远离聊天机器人)来减少饮酒的危险饮酒参与者中,移动健康酒精干预措施使用的促进因素和障碍。我们在2019年12月至2020年1月期间对20名使用该应用程序或聊天机器人三个月的参与者进行了半结构化访谈,确定了使用的常见促进因素和障碍。两种干预措施的参与者都报告说,跟踪他们的饮酒情况、收到关于他们饮酒的反馈、感到有责任感、关于高风险饮酒时间的通知以及跟踪饮酒的提醒促进了持续参与。积极性、个性化、深入了解他们的饮酒情况以及每日提示在聊天机器人用户中是更强的促进因素主题,表明与用户主导的应用程序相比,这些可能是基于人工智能聊天机器人的干预措施的优势。虽然跟踪饮酒是两组的一个主题,但在应用程序用户中更为突出,这可能是因为应用程序中有快速跟踪饮酒的选项,而对话式聊天机器人没有。通知故障、技术故障以及跟踪饮酒数据的困难是两组的使用障碍。冗长的设置过程对应用程序用户来说是一个更大的障碍。聊天机器人用户报告说,机器人对话的重复性、收到非量身定制的每日提示以及无法自行导航到所需内容是障碍。为了最大限度地提高对人工智能干预措施的参与度,未来的开发者应该包括跟踪功能以加强行为改变自我监测,并注意重复对话、冗长的设置以及限制自主导航的路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00fc/10778607/fb5e109df1a6/healthcare-12-00101-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验