Suppr超能文献

应用机器学习预测阻塞性睡眠呼吸暂停综合征严重程度。

Application of machine learning to predict obstructive sleep apnea syndrome severity.

机构信息

University of Bari Aldo Moro, Italy.

University of Foggia, Italy.

出版信息

Health Informatics J. 2020 Mar;26(1):298-317. doi: 10.1177/1460458218824725. Epub 2019 Jan 30.

Abstract

INTRODUCTION

Obstructive sleep apnea syndrome has become an important public health concern. Polysomnography is traditionally considered an established and effective diagnostic tool providing information on the severity of obstructive sleep apnea syndrome and the degree of sleep fragmentation. However, the numerous steps in the polysomnography test to diagnose obstructive sleep apnea syndrome are costly and time consuming. This study aimed to test the efficacy and clinical applicability of different machine learning methods based on demographic information and questionnaire data to predict obstructive sleep apnea syndrome severity.

MATERIALS AND METHODS

We collected data about demographic characteristics, spirometry values, gas exchange (PaO, PaCO) and symptoms (Epworth Sleepiness Scale, snoring, etc.) of 313 patients with previous diagnosis of obstructive sleep apnea syndrome. After principal component analysis, we selected 19 variables which were used for further preprocessing and to eventually train seven types of classification models and five types of regression models to evaluate the prediction ability of obstructive sleep apnea syndrome severity, represented either by class or by apnea-hypopnea index. All models are trained with an increasing number of features and the results are validated through stratified 10-fold cross validation.

RESULTS

Comparative results show the superiority of support vector machine and random forest models for classification, while support vector machine and linear regression are better suited to predict apnea-hypopnea index. Also, a limited number of features are enough to achieve the maximum predictive accuracy. The best average classification accuracy on test sets is 44.7 percent, with the same average sensitivity (recall). In only 5.7 percent of cases, a severe obstructive sleep apnea syndrome (class 4) is misclassified as mild (class 2). Regression results show a minimum achieved root mean squared error of 22.17.

CONCLUSION

The problem of predicting apnea-hypopnea index or severity classes for obstructive sleep apnea syndrome is very difficult when using only data collected prior to polysomnography test. The results achieved with the available data suggest the use of machine learning methods as tools for providing patients with a priority level for polysomnography test, but they still cannot be used for automated diagnosis.

摘要

简介

阻塞性睡眠呼吸暂停综合征已成为一个重要的公共卫生关注点。多导睡眠图通常被认为是一种既定且有效的诊断工具,可提供有关阻塞性睡眠呼吸暂停综合征严重程度和睡眠碎片化程度的信息。然而,用于诊断阻塞性睡眠呼吸暂停综合征的多导睡眠图测试有许多步骤,既昂贵又耗时。本研究旨在测试基于人口统计学信息和问卷调查数据的不同机器学习方法预测阻塞性睡眠呼吸暂停综合征严重程度的功效和临床适用性。

材料与方法

我们收集了 313 名先前被诊断为阻塞性睡眠呼吸暂停综合征患者的人口统计学特征、肺活量值、气体交换(PaO、PaCO)和症状(Epworth 睡眠量表、打鼾等)数据。在主成分分析后,我们选择了 19 个变量,用于进一步预处理,并最终训练七种分类模型和五种回归模型,以评估阻塞性睡眠呼吸暂停综合征严重程度的预测能力,分别以类别或呼吸暂停低通气指数表示。所有模型都使用越来越多的特征进行训练,并通过分层 10 倍交叉验证验证结果。

结果

比较结果表明,支持向量机和随机森林模型在分类方面具有优势,而支持向量机和线性回归更适合预测呼吸暂停低通气指数。此外,有限数量的特征足以达到最大预测精度。在测试集中,最佳平均分类准确率为 44.7%,相同的平均灵敏度(召回率)。只有 5.7%的情况下,严重阻塞性睡眠呼吸暂停综合征(第 4 类)被错误分类为轻度(第 2 类)。回归结果显示,最小达到的均方根误差为 22.17。

结论

仅使用多导睡眠图测试前收集的数据预测呼吸暂停低通气指数或阻塞性睡眠呼吸暂停综合征严重程度类别非常困难。利用现有数据得出的结果表明,机器学习方法可作为为多导睡眠图测试提供患者优先级的工具,但仍不能用于自动诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验