Suppr超能文献

芝麻蛋白源肽对 和 的抑菌作用:计算机模拟和体外分析。

Antibacterial Effect of Sesame Protein-Derived Peptides against and : In Silico and In Vitro Analysis.

机构信息

Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.

Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.

出版信息

Nutrients. 2024 Jan 4;16(1):175. doi: 10.3390/nu16010175.

Abstract

This study aimed to screen out antibacterial peptides derived from sesame ( L.) through in silico and in vitro methods. In silico proteolysis of sesame proteins with pepsin, trypsin, and chymotrypsin was performed with the online server BIOPEP-UWM. The CAMPR3 online server was used to predict the antimicrobial effect of peptides. The ToxinPred, PepCalc, and AllergenFP tools were utilized to forecast the physicochemical properties, toxicity, and allergen of the peptides. Molecular docking analysis showed that six cationic antimicrobial peptides could directly interact with the key sites of dihydropteroate synthase, whereas Ala-Gly-Gly-Val-Pro-Arg and Ser-Thr-Ile-Arg exhibited the strongest binding affinity. In vitro antibacterial experiment showed the minimum inhibitory concentration (MIC) of Ser-Thr-Ile-Arg against and was 1024 and 512 µg/mL, respectively. Meanwhile, MIC of Ala-Gly-Gly-Val-Pro-Arg against both bacterial species was 512 µg/mL. Our results suggest that peptides from sesame possess the ability to potentially hinder bacterial activity.

摘要

本研究旨在通过计算机模拟和体外方法筛选芝麻(Sesame)来源的抗菌肽。使用在线服务器 BIOPEP-UWM 对芝麻蛋白进行胃蛋白酶、胰蛋白酶和糜蛋白酶的计算机模拟蛋白水解。使用 CAMPR3 在线服务器预测肽的抗菌效果。利用 ToxinPred、PepCalc 和 AllergenFP 工具预测肽的理化性质、毒性和过敏原。分子对接分析表明,有 6 个阳离子抗菌肽可以直接与二氢喋呤合成酶的关键位点相互作用,而 Ala-Gly-Gly-Val-Pro-Arg 和 Ser-Thr-Ile-Arg 表现出最强的结合亲和力。体外抗菌实验表明,Ser-Thr-Ile-Arg 对 和 的最小抑菌浓度(MIC)分别为 1024 和 512 µg/mL,而 Ala-Gly-Gly-Val-Pro-Arg 对两种细菌的 MIC 均为 512 µg/mL。我们的研究结果表明,芝麻中的肽具有潜在抑制细菌活性的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e353/10780390/a2e0f9e4c187/nutrients-16-00175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验