文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine Learning Analysis of Gaze Data for Enhanced Precision in Diagnosing Oral Mucosal Diseases.

作者信息

Uchida Shuji, Hiraoka Shin-Ichiro, Kawamura Kohei, Sakamoto Katsuya, Akiyama Ryo, Tanaka Susumu

机构信息

Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamada-Oka, Suita 565-0871, Osaka, Japan.

出版信息

J Clin Med. 2023 Dec 26;13(1):136. doi: 10.3390/jcm13010136.


DOI:10.3390/jcm13010136
PMID:38202143
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780288/
Abstract

The diagnosis of oral mucosal diseases is a significant challenge due to their diverse differential characteristics. Risk assessment of lesions by visual examination is a complex process due to the lack of definitive guidelines. This study aimed to improve this process by creating a diagnostic algorithm using gaze data acquired during oral mucosal disease examinations. A total of 78 dentists were included in this study. Tobii Pro Nano (Tobii Technology) was used to acquire gaze data during clinical photographic visual examinations. Advanced analysis tools such as support vector machines and heatmaps were used to visualize the gazing tendencies of a group of skilled oral surgeons, focusing on the number of gazes per region and the gazing time ratios. The preliminary findings showed the possibility of visualizing gazing tendencies and identifying areas of importance for diagnosis. The classification of intraoral photographs based on gross features revealed the existence of an optimal examination method for each category and diagnostically significant areas. This novel approach to analyzing gaze data has the potential to refine diagnostic techniques and increase both accuracy and efficiency.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/01a772282f06/jcm-13-00136-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/870df6ec4fae/jcm-13-00136-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/e4734d199d32/jcm-13-00136-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/61709d000e58/jcm-13-00136-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/408ccbfbc4e8/jcm-13-00136-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/0daa754162b3/jcm-13-00136-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/64ae78ef1687/jcm-13-00136-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/632f07f19bad/jcm-13-00136-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/ed0f784cd900/jcm-13-00136-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/fa59fa3db814/jcm-13-00136-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/cf3a1e383ec6/jcm-13-00136-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/01a772282f06/jcm-13-00136-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/870df6ec4fae/jcm-13-00136-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/e4734d199d32/jcm-13-00136-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/61709d000e58/jcm-13-00136-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/408ccbfbc4e8/jcm-13-00136-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/0daa754162b3/jcm-13-00136-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/64ae78ef1687/jcm-13-00136-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/632f07f19bad/jcm-13-00136-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/ed0f784cd900/jcm-13-00136-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/fa59fa3db814/jcm-13-00136-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/cf3a1e383ec6/jcm-13-00136-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a3/10780288/01a772282f06/jcm-13-00136-g011.jpg

相似文献

[1]
Machine Learning Analysis of Gaze Data for Enhanced Precision in Diagnosing Oral Mucosal Diseases.

J Clin Med. 2023-12-26

[2]
Improvement of Mucosal Lesion Diagnosis with Machine Learning Based on Medical and Semiological Data: An Observational Study.

J Clin Med. 2022-11-7

[3]
Detecting representative characteristics of different genders using intraoral photographs: a deep learning model with interpretation of gradient-weighted class activation mapping.

BMC Oral Health. 2023-5-25

[4]
24-Gaze-Point Calibration Method for Improving the Precision of AC-EOG Gaze Estimation.

Sensors (Basel). 2019-8-22

[5]
A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study.

EClinicalMedicine. 2020-9-23

[6]
Improvement of classification accuracy in a phase-tagged steady-state visual evoked potential-based brain computer interface using multiclass support vector machine.

Biomed Eng Online. 2013-5-21

[7]
Efficacy of Gaze Photographs in Diagnosing Ocular Myasthenia Gravis.

J Clin Neurol. 2018-7

[8]
MLGaze: Machine Learning-Based Analysis of Gaze Error Patterns in Consumer Eye Tracking Systems.

Vision (Basel). 2020-5-7

[9]
Gaze Following and Pupil Dilation as Early Diagnostic Markers of Autism in Toddlers.

Children (Basel). 2021-2-5

[10]
Artificial Intelligence in Plasma Cell Myeloma: Neural Networks and Support Vector Machines in the Classification of Plasma Cell Myeloma Data at Diagnosis.

J Pathol Inform. 2021-9-16

引用本文的文献

[1]
Examining the Visual Search Behaviour of Experts When Screening for the Presence of Diabetic Retinopathy in Fundus Images.

J Clin Med. 2025-4-28

[2]
A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence.

Materials (Basel). 2024-2-27

本文引用的文献

[1]
Reliability of non-contact tongue diagnosis for Sjögren's syndrome using machine learning method.

Sci Rep. 2023-1-24

[2]
Evaluation of Oral Mucosal Lesions Using the IllumiScan Fluorescence Visualisation Device: Distinguishing Squamous Cell Carcinoma.

Int J Environ Res Public Health. 2022-8-21

[3]
Consultation Pricing of the Online Health Care Service in China: Hierarchical Linear Regression Approach.

J Med Internet Res. 2021-7-14

[4]
Influence of dental education on eye gaze distribution when observing facial profiles with varying degrees of lip protrusion.

J Dent Educ. 2021-4

[5]
A Comparative Study of the Examination Pattern of Panoramic Radiographs Using Eye-tracking Software.

J Contemp Dent Pract. 2019-12-1

[6]
Global patterns and trends in cancers of the lip, tongue and mouth.

Oral Oncol. 2020-3

[7]
Visual search in breast imaging.

Br J Radiol. 2019-7-18

[8]
Depth of invasion in superficial oral tongue carcinoma quantified using intraoral ultrasonography.

Laryngoscope. 2018-12

[9]
Cancer of the tongue - early detection improves the prognosis.

Duodecim. 2016

[10]
[Statistical analysis using freely-available "EZR (Easy R)" software].

Rinsho Ketsueki. 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索