文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用机器学习方法的非接触式舌诊诊断干燥综合征的可靠性。

Reliability of non-contact tongue diagnosis for Sjögren's syndrome using machine learning method.

机构信息

Graduate School of Science and Technology, Chiba University, Chiba, Japan.

Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan.

出版信息

Sci Rep. 2023 Jan 24;13(1):1334. doi: 10.1038/s41598-023-27764-4.


DOI:10.1038/s41598-023-27764-4
PMID:36693892
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9872069/
Abstract

Sjögren's syndrome (SS) is an autoimmune disease characterized by dry mouth. The cause of SS is unknown, and its diverse symptoms make diagnosis difficult. The Saxon test, an intraoral examination, is used as the primary diagnostic method for SS, however, the risk of salivary infection is problematic. Therefore, we investigate the possibility of diagnosing SS by non-contact and imaging observation of the tongue surface. In this study, we obtained tongue photographs of 60 patients at the Tsurumi University School of Dentistry outpatient clinic to clarify the relationship between the features of the tongue and SS. We divided the tongue into four regions, and the color of each region was transformed into CIE1976Lab* space and statistically analyzed. To clarify experimentally the possibility of SS diagnosis using tongue color, we employed three machine-learning models: logistic regression, support vector machine, and random forest. In addition, we constructed diagnostic prediction models based on the Bagging and Stacking methods combined with three machine-learning models for comparative evaluation. This analysis used dimensionality compression by principal component analysis to eliminate redundancy in tongue color information. We found a significant difference between the a* value of the rear part of the tongue and the b* value of the middle part of the tongue in SS and non-SS patients. In addition to the principal component scores of tongue color, the support vector machine was trained using age, and achieved high accuracy (71.3%) and specificity (78.1%). The results indicate that the prediction of SS diagnosis by tongue color reaches a level comparable to machine learning models trained using the Saxon test. This is the first study using machine learning to predict SS diagnosis by non-contact tongue observation. Our proposed method can potentially support early SS detection simply and conveniently, eliminating the risk of infection at diagnosis, and it should be validated and optimized in clinical practice.

摘要

干燥综合征(SS)是一种以口干为特征的自身免疫性疾病。SS 的病因尚不清楚,其多样的症状使其诊断变得困难。Saxon 测试是一种口腔内检查,被用作 SS 的主要诊断方法,然而,唾液感染的风险是一个问题。因此,我们研究了通过非接触和舌面成像观察来诊断 SS 的可能性。在这项研究中,我们从鹤见大学齿学部的门诊患者中获得了 60 名患者的舌照片,以明确舌特征与 SS 之间的关系。我们将舌分为四个区域,并将每个区域的颜色转换为 CIE1976Lab空间,并进行了统计分析。为了明确使用舌色诊断 SS 的可能性,我们采用了三种机器学习模型:逻辑回归、支持向量机和随机森林。此外,我们还构建了基于 Bagging 和 Stacking 方法的诊断预测模型,结合三种机器学习模型进行比较评估。该分析使用主成分分析进行维度压缩,以消除舌色信息的冗余。我们发现 SS 患者和非 SS 患者的舌后部 a值和舌中部 b*值之间存在显著差异。除了舌色的主成分得分外,还使用年龄对支持向量机进行了训练,实现了高准确率(71.3%)和高特异性(78.1%)。结果表明,通过舌色预测 SS 诊断的准确率达到了与基于 Saxon 测试训练的机器学习模型相当的水平。这是首次使用机器学习通过非接触式舌观察预测 SS 诊断的研究。我们提出的方法有可能通过简单方便的方式支持早期 SS 检测,消除诊断时的感染风险,并应在临床实践中进行验证和优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/4662aaf0985e/41598_2023_27764_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/e5d09b8e4ec1/41598_2023_27764_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/216dd75a2cc0/41598_2023_27764_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/a5763f42bb7a/41598_2023_27764_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/64d4ee508ea3/41598_2023_27764_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/4a9b5b3a7122/41598_2023_27764_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/6cad8123303c/41598_2023_27764_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/4662aaf0985e/41598_2023_27764_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/e5d09b8e4ec1/41598_2023_27764_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/216dd75a2cc0/41598_2023_27764_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/a5763f42bb7a/41598_2023_27764_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/64d4ee508ea3/41598_2023_27764_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/4a9b5b3a7122/41598_2023_27764_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/6cad8123303c/41598_2023_27764_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dcd/9873910/4662aaf0985e/41598_2023_27764_Fig7_HTML.jpg

相似文献

[1]
Reliability of non-contact tongue diagnosis for Sjögren's syndrome using machine learning method.

Sci Rep. 2023-1-24

[2]
The Potential Role for Early Biomarker Testing as Part of a Modern, Multidisciplinary Approach to Sjögren's Syndrome Diagnosis.

Adv Ther. 2017-4

[3]
Evaluation of the Saxon test for patients with hyposalivation without Sjögren's syndrome.

J Oral Rehabil. 2020-10-5

[4]
Significance and Implications of Patient-reported Xerostomia in Sjögren's Syndrome: Findings From the National Institutes of Health Cohort.

EBioMedicine. 2016-9-9

[5]
The European Community Study Group on diagnostic criteria for Sjögren's syndrome. Sensitivity and specificity of tests for ocular and oral involvement in Sjögren's syndrome.

Ann Rheum Dis. 1994-10

[6]
Coexistence of Sjögren's syndrome and sarcoidosis: a report of five cases.

J Oral Pathol Med. 2007-7

[7]
Validity of the saliva ferning test for the diagnosis of dry mouth in Sjögren's syndrome.

Rev Rhum Engl Ed. 1999-2

[8]
Raman spectroscopy combined with machine learning algorithms for rapid detection Primary Sjögren's syndrome associated with interstitial lung disease.

Photodiagnosis Photodyn Ther. 2022-12

[9]
Efficient diagnosis of Sjögren's syndrome to reduce the burden on patients.

Mod Rheumatol. 2015-1

[10]
Sjögren's syndrome: the diagnostic potential of early oral manifestations preceding hyposalivation/xerostomia.

J Oral Pathol Med. 2005-1

引用本文的文献

[1]
A Review of the Current Clinical Aspects of Sjögren's Disease: Geographical Difference, Classification/Diagnostic Criteria, Recent Advancements in Diagnostic Methods, and Molecular Targeted Therapy.

J Clin Med. 2025-8-7

[2]
Diagnostic value of tongue manifestations for primary Sjögren's syndrome: construction and validation of disease screening model.

Front Med (Lausanne). 2025-5-27

[3]
Machine reading and recovery of colors for hemoglobin-related bioassays and bioimaging.

Sci Adv. 2025-6-6

[4]
Artificial intelligence in autoimmune diseases: a bibliometric exploration of the past two decades.

Front Immunol. 2025-4-22

[5]
Reliability of noninvasive hyperspectral tongue diagnosis for menstrual diseases using machine learning method.

Sci Rep. 2025-2-20

[6]
Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review.

Clin Exp Dent Res. 2024-12

[7]
Feasibility of tongue image detection for coronary artery disease: based on deep learning.

Front Cardiovasc Med. 2024-8-23

[8]
Effects of Sitting and Supine Positions on Tongue Color as Measured by Tongue Image Analyzing System and Its Relation to Biometric Information.

Evid Based Complement Alternat Med. 2024-3-23

[9]
Random forest regression for prediction of Covid-19 daily cases and deaths in Turkey.

Heliyon. 2024-2-8

[10]
Choice of refractive surgery types for myopia assisted by machine learning based on doctors' surgical selection data.

BMC Med Inform Decis Mak. 2024-2-8

本文引用的文献

[1]
Detection of primary Sjögren's syndrome in primary care: developing a classification model with the use of routine healthcare data and machine learning.

BMC Prim Care. 2022-8-9

[2]
NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning.

Brief Bioinform. 2021-11-5

[3]
HLPpred-Fuse: improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation.

Bioinformatics. 2020-6-1

[4]
Complexity perception classification method for tongue constitution recognition.

Artif Intell Med. 2019-3-20

[5]
Oral mucosal manifestations in primary and secondary Sjögren syndrome and dry mouth syndrome.

Postepy Dermatol Alergol. 2016-2

[6]
The association between objective tongue color and endoscopic findings: results from the Kyushu and Okinawa population study (KOPS).

BMC Complement Altern Med. 2015-10-16

[7]
Proposal for a new noncontact method for measuring tongue moisture to assist in tongue diagnosis and development of the tongue image analyzing system, which can separately record the gloss components of the tongue.

Biomed Res Int. 2015

[8]
Study of factors involved in tongue color diagnosis by kampo medical practitioners using the farnsworth-munsell 100 hue test and tongue color images.

Evid Based Complement Alternat Med. 2014-4-6

[9]
Temporal changes in tongue color as criterion for tongue diagnosis in Kampo medicine.

Forsch Komplementmed. 2012

[10]
Dermoscopic patterns of the filiform papillae of the tongue in patients with Sjögren's syndrome.

J Dermatol. 2006-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索