Suppr超能文献

基于不平衡分类和小波包变换的癫痫发作检测

Epileptic seizure detection based on imbalanced classification and wavelet packet transform.

作者信息

Yuan Qi, Zhou Weidong, Zhang Liren, Zhang Fan, Xu Fangzhou, Leng Yan, Wei Dongmei, Chen Meina

机构信息

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

School of Information Science and Engineering, Shandong University, Jinan 250100, China.

出版信息

Seizure. 2017 Aug;50:99-108. doi: 10.1016/j.seizure.2017.05.018. Epub 2017 Jun 8.

Abstract

PURPOSE

Automatic seizure detection is significant for the diagnosis of epilepsy and the reduction of massive workload for reviewing continuous EEG recordings.

METHODS

Compared with the long non-seizure periods, the durations of the seizure events are much shorter in the continuous EEG recordings. So the seizure detection task can be regarded as an imbalanced classification problem. In this paper, a novel method based on the weighted extreme learning machine (ELM) is proposed for seizure detection with imbalanced EEG data distribution. Firstly, the wavelet packet transform is employed to analyze the EEG data and obtain the time and frequency domain features, and the pattern match regularity statistic (PMRS) is used as the nonlinear feature to quantify the complexity of the EEG time series. After that, the EEG feature vectors are discriminated by the weighted ELM. It can assign different weights for the EEG feature samples according to the class distribution, so that to effectively moderate the bias in performance caused by imbalanced class distribution.

RESULTS

The metric G-mean which takes into account of both the sensitivity and specificity is used to evaluate the performance of this method. The G-mean of 93.96%, event-based sensitivity of 97.73% and false alarm rate of 0.37/h are yielded on the publicly available EEG dataset.

CONCLUSION

The comparison with other detection methods shows the superior performance of this method, which indicates its potential for detecting seizure events in clinical practice. Additionally, much larger amounts of true continuous EEG data will be used to test the proposed method further in the future work.

摘要

目的

自动癫痫发作检测对于癫痫诊断以及减少连续脑电图记录回顾的大量工作量具有重要意义。

方法

在连续脑电图记录中,与长时间的非癫痫发作期相比,癫痫发作事件的持续时间要短得多。因此,癫痫发作检测任务可被视为一个不平衡分类问题。本文提出了一种基于加权极限学习机(ELM)的新方法,用于处理脑电图数据分布不平衡的癫痫发作检测。首先,采用小波包变换分析脑电图数据并获取时域和频域特征,模式匹配规律性统计量(PMRS)被用作非线性特征来量化脑电图时间序列的复杂性。之后,通过加权ELM对脑电图特征向量进行判别。它可以根据类别分布为脑电图特征样本分配不同权重,从而有效缓解类别分布不平衡导致的性能偏差。

结果

采用兼顾敏感性和特异性的指标G均值来评估该方法的性能。在公开可用的脑电图数据集上,该方法的G均值为93.96%,基于事件的敏感性为97.73%,误报率为0.37次/小时。

结论

与其他检测方法的比较表明该方法具有优越性能,这表明其在临床实践中检测癫痫发作事件的潜力。此外,在未来工作中将使用更多真实的连续脑电图数据进一步测试所提出的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验