Suppr超能文献

基于注意力的小波卷积神经网络在癫痫脑电分类中的应用。

An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:957-966. doi: 10.1109/TNSRE.2022.3166181. Epub 2022 Apr 19.

Abstract

As a kind of non-invasive, low-cost, and readily available brain examination, EEG has attached significance to the means of clinical diagnosis of epilepsy. However, the reading of long-term EEG records has brought a heavy burden to neurologists and experts. Therefore, automatic EEG classification for epileptic patients plays an essential role in epilepsy diagnosis and treatment. This paper proposes an Attention Mechanism-based Wavelet Convolution Neural Network for epilepsy EEG classification. Attention Mechanism-based Wavelet Convolution Neural Network firstly uses multi-scale wavelet analysis to decompose the input EEGs to obtain their components in different frequency bands. Then, these decomposed multi-scale EEGs are input into the Convolution Neural Network with an attention mechanism for further feature extraction and classification. The proposed algorithm achieves 98.89% triple classification accuracy on the Bonn EEG database and 99.70% binary classification accuracy on the Bern-Barcelona EEG database. Our experiments prove that the proposed algorithm achieves a state-of-the-art classification effect on epilepsy EEG.

摘要

作为一种非侵入性、低成本且易于获取的脑部检查方法,脑电图(EEG)在癫痫的临床诊断手段中具有重要意义。然而,长时间的脑电图记录的解读给神经科医生和专家带来了沉重的负担。因此,对癫痫患者的自动脑电图分类在癫痫的诊断和治疗中起着至关重要的作用。本文提出了一种基于注意力机制的小波卷积神经网络(Attention Mechanism-based Wavelet Convolution Neural Network,AM-WCNN)用于癫痫脑电图分类。基于注意力机制的小波卷积神经网络首先使用多尺度小波分析将输入的脑电图进行分解,以获取不同频段的分量。然后,将这些分解后的多尺度脑电图输入到具有注意力机制的卷积神经网络中,以进行进一步的特征提取和分类。在博恩(Bonn)脑电图数据库上,该算法在三重分类方面达到了 98.89%的准确率,在伯尔尼-巴塞罗那(Bern-Barcelona)脑电图数据库上在双分类方面达到了 99.70%的准确率。我们的实验证明,该算法在癫痫脑电图分类方面取得了最先进的分类效果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验