Suppr超能文献

使用受物理启发的机器学习模型在室温半导体探测器中识别未知缺陷

Identifying Defects without Knowledge in a Room-Temperature Semiconductor Detector Using Physics Inspired Machine Learning Model.

作者信息

Banerjee Srutarshi, Rodrigues Miesher, Ballester Manuel, Vija Alexander Hans, Katsaggelos Aggelos

机构信息

Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA.

Siemens Medical Solutions USA, Inc., Hoffmann Estates, IL 60192, USA.

出版信息

Sensors (Basel). 2023 Dec 23;24(1):92. doi: 10.3390/s24010092.

Abstract

Room-temperature semiconductor radiation detectors (RTSD) such as CdZnTe are popular in Computed Tomography (CT) imaging and other applications. Transport properties and material defects with respect to electron and hole transport often need to be characterized, which is a labor intensive process. However, these defects often vary from one RTSD to another and are not known during characterization of the material. In recent years, physics-inspired machine learning (PI-ML) models have been developed for the RTSDs which have the ability to characterize the defects in a RTSD by discretizing it volumetrically. These learning models capture the heterogeneity of the defects in the RTSD-which arises due to the fabrication process and the energy bands of elements in the RTSD. In those models, the different defects of RTSD-trapping, detrapping and recombination for electrons and holes-are present. However, these defects are often unknown. In this work, we show the capabilities of a PI-ML model which has been developed considering all the material defects to identify certain defects which are present (or absent). Additionally, these models can identify the defects over the volume of the RTSD in a discretized manner.

摘要

室温半导体辐射探测器(RTSD),如碲锌镉,在计算机断层扫描(CT)成像和其他应用中很受欢迎。关于电子和空穴传输的输运特性和材料缺陷通常需要进行表征,这是一个劳动密集型过程。然而,这些缺陷在不同的RTSD之间往往存在差异,并且在材料表征过程中并不清楚。近年来,针对RTSD开发了受物理启发的机器学习(PI-ML)模型,该模型能够通过对RTSD进行体积离散化来表征其中的缺陷。这些学习模型捕捉了RTSD中缺陷的异质性,这种异质性是由制造过程和RTSD中元素的能带引起的。在那些模型中,存在RTSD的不同缺陷,即电子和空穴的俘获、去俘获和复合。然而,这些缺陷往往是未知的。在这项工作中,我们展示了一个PI-ML模型的能力,该模型在考虑所有材料缺陷的情况下开发,用于识别存在(或不存在)的某些缺陷。此外,这些模型可以以离散化的方式识别RTSD体积内的缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b7/10781357/55ed9b81e920/sensors-24-00092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验