Suppr超能文献

一种基于物理的机器学习模型,用于三维表征室温半导体探测器。

A physics based machine learning model to characterize room temperature semiconductor detectors in 3D.

作者信息

Banerjee Srutarshi, Rodrigues Miesher, Ballester Manuel, Vija Alexander H, Katsaggelos Aggelos K

机构信息

Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.

Siemens Medical Solutions USA, Inc., Hoffman Estates, IL, 60192, USA.

出版信息

Sci Rep. 2024 Apr 2;14(1):7803. doi: 10.1038/s41598-024-58027-5.

Abstract

Room temperature semiconductor radiation detectors (RTSD) for X-ray and -ray detection are vital tools for medical imaging, astrophysics and other applications. CdZnTe (CZT) has been the main RTSD for more than three decades with desired detection properties. In a typical pixelated configuration, CZT have electrodes on opposite ends. For advanced event reconstruction algorithms at sub-pixel level, detailed characterization of the RTSD is required in three dimensional (3D) space. However, 3D characterization of the material defects and charge transport properties in the sub-pixel regime is a labor intensive process with skilled manpower and novel experimental setups. Presently, state-of-art characterization is done over the bulk of the RTSD considering homogenous properties. In this paper, we propose a novel physics based machine learning (PBML) model to characterize the RTSD over a discretized sub-pixelated 3D volume which is assumed. Our novel approach is the first to characterize a full 3D charge transport model of the RTSD. In this work, we first discretize the RTSD between a pixelated electrodes spatially into 3 dimensions-x, y, and z. The resulting discretizations are termed as voxels in 3D space. In each voxel, the different physics based charge transport properties such as drift, trapping, detrapping and recombination of charges are modeled as trainable model weights. The drift of the charges considers second order non-linear motion which is observed in practice with the RTSDs. Based on the electron-hole pair injections as input to the PBML model, and signals at the electrodes, free and trapped charges (electrons and holes) as outputs of the model, the PBML model determines the trainable weights by backpropagating the loss function. The trained weights of the model represents one-to-one relation to that of the actual physical charge transport properties in a voxelized detector.

摘要

用于X射线和伽马射线探测的室温半导体辐射探测器(RTSD)是医学成像、天体物理学及其他应用中的重要工具。三十多年来,碲锌镉(CZT)一直是具有理想探测特性的主要RTSD。在典型的像素化配置中,CZT在相对两端有电极。对于亚像素级的先进事件重建算法,需要在三维(3D)空间中对RTSD进行详细表征。然而,在亚像素区域对材料缺陷和电荷传输特性进行3D表征是一个需要熟练人力和新颖实验装置的劳动密集型过程。目前,考虑到均匀特性,在RTSD的整体上进行最先进的表征。在本文中,我们提出了一种基于物理的新型机器学习(PBML)模型,用于在假设的离散亚像素化3D体积上对RTSD进行表征。我们的新方法首次对RTSD的完整3D电荷传输模型进行了表征。在这项工作中,我们首先在空间上将像素化电极之间的RTSD在x、y和z三个维度上进行离散化。由此产生的离散化在3D空间中被称为体素。在每个体素中,不同的基于物理的电荷传输特性,如电荷的漂移、俘获、去俘获和复合,被建模为可训练的模型权重。电荷的漂移考虑了二阶非线性运动,这在实际的RTSD中是可以观察到的。基于作为PBML模型输入的电子 - 空穴对注入以及电极处的信号,作为模型输出的自由电荷和俘获电荷(电子和空穴),PBML模型通过反向传播损失函数来确定可训练权重。模型的训练权重与体素化探测器中实际物理电荷传输特性的权重一一对应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f23/10987668/d04b9e5966e1/41598_2024_58027_Fig1_HTML.jpg

相似文献

2
Learning-based physical models of room-temperature semiconductor detectors with reduced data.
Sci Rep. 2023 Jan 4;13(1):168. doi: 10.1038/s41598-022-27125-7.
5
Charge Sharing and Charge Loss in High-Flux Capable Pixelated CdZnTe Detectors.
Sensors (Basel). 2021 May 8;21(9):3260. doi: 10.3390/s21093260.
7
Improved x-ray spectroscopy with room temperature CZT detectors.
Phys Med Biol. 2011 Sep 7;56(17):5735-51. doi: 10.1088/0031-9155/56/17/017. Epub 2011 Aug 12.
9
Room-temperature performance of 3 mm-thick cadmium-zinc-telluride pixel detectors with sub-millimetre pixelization.
J Synchrotron Radiat. 2020 Sep 1;27(Pt 5):1180-1189. doi: 10.1107/S1600577520008942. Epub 2020 Aug 17.

引用本文的文献

1
Radiation Detectors and Sensors in Medical Imaging.
Sensors (Basel). 2024 Sep 26;24(19):6251. doi: 10.3390/s24196251.

本文引用的文献

1
Learning-based physical models of room-temperature semiconductor detectors with reduced data.
Sci Rep. 2023 Jan 4;13(1):168. doi: 10.1038/s41598-022-27125-7.
2
The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?
Front Big Data. 2021 Nov 19;4:669097. doi: 10.3389/fdata.2021.669097. eCollection 2021.
3
Characterization of the Uniformity of High-Flux CdZnTe Material.
Sensors (Basel). 2020 May 12;20(10):2747. doi: 10.3390/s20102747.
4
Wave physics as an analog recurrent neural network.
Sci Adv. 2019 Dec 20;5(12):eaay6946. doi: 10.1126/sciadv.aay6946. eCollection 2019 Dec.
6
Solving high-dimensional partial differential equations using deep learning.
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):8505-8510. doi: 10.1073/pnas.1718942115. Epub 2018 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验