Suppr超能文献

基于脑机接口的工业中用于控制信息物理系统的雾计算

Fog Computing for Control of Cyber-Physical Systems in Industry Using BCI.

作者信息

Rodríguez-Azar Paula Ivone, Mejía-Muñoz Jose Manuel, Cruz-Mejía Oliverio, Torres-Escobar Rafael, López Lucero Verónica Ruelas

机构信息

Departamento de Ingeniería Industrial y Manufactura, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico.

Departamento de Ingeniería Eléctrica, Instituto de Ingenieria y Tecnologia, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico.

出版信息

Sensors (Basel). 2023 Dec 27;24(1):149. doi: 10.3390/s24010149.

Abstract

Brain-computer interfaces use signals from the brain, such as EEG, to determine brain states, which in turn can be used to issue commands, for example, to control industrial machinery. While Cloud computing can aid in the creation and operation of industrial multi-user BCI systems, the vast amount of data generated from EEG signals can lead to slow response time and bandwidth problems. Fog computing reduces latency in high-demand computation networks. Hence, this paper introduces a fog computing solution for BCI processing. The solution consists in using fog nodes that incorporate machine learning algorithms to convert EEG signals into commands to control a cyber-physical system. The machine learning module uses a deep learning encoder to generate feature images from EEG signals that are subsequently classified into commands by a random forest. The classification scheme is compared using various classifiers, being the random forest the one that obtained the best performance. Additionally, a comparison was made between the fog computing approach and using only cloud computing through the use of a fog computing simulator. The results indicate that the fog computing method resulted in less latency compared to the solely cloud computing approach.

摘要

脑机接口利用来自大脑的信号,如脑电图(EEG),来确定大脑状态,进而可用于发出指令,例如控制工业机械。虽然云计算有助于工业多用户脑机接口系统的创建和运行,但脑电图信号产生的大量数据可能导致响应时间缓慢和带宽问题。雾计算可减少高需求计算网络中的延迟。因此,本文介绍了一种用于脑机接口处理的雾计算解决方案。该解决方案包括使用包含机器学习算法的雾节点,将脑电图信号转换为控制信息物理系统的指令。机器学习模块使用深度学习编码器从脑电图信号生成特征图像,随后由随机森林将其分类为指令。使用各种分类器对分类方案进行比较,随机森林是性能最佳的分类器。此外,通过使用雾计算模拟器,对雾计算方法和仅使用云计算的方法进行了比较。结果表明,与仅使用云计算的方法相比,雾计算方法的延迟更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5e/10781321/983fc1b3a7de/sensors-24-00149-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验