Pervasive Embedded Technology Lab, Computer Science Department, National Chiao Tung University Hsinchu, Taiwan, R.O.C.
Swartz Center for Computational Neuroscience, University of California San Diego, CA, USA.
Front Hum Neurosci. 2014 Jun 3;8:370. doi: 10.3389/fnhum.2014.00370. eCollection 2014.
EEG-based Brain-computer interfaces (BCI) are facing basic challenges in real-world applications. The technical difficulties in developing truly wearable BCI systems that are capable of making reliable real-time prediction of users' cognitive states in dynamic real-life situations may seem almost insurmountable at times. Fortunately, recent advances in miniature sensors, wireless communication and distributed computing technologies offered promising ways to bridge these chasms. In this paper, we report an attempt to develop a pervasive on-line EEG-BCI system using state-of-art technologies including multi-tier Fog and Cloud Computing, semantic Linked Data search, and adaptive prediction/classification models. To verify our approach, we implement a pilot system by employing wireless dry-electrode EEG headsets and MEMS motion sensors as the front-end devices, Android mobile phones as the personal user interfaces, compact personal computers as the near-end Fog Servers and the computer clusters hosted by the Taiwan National Center for High-performance Computing (NCHC) as the far-end Cloud Servers. We succeeded in conducting synchronous multi-modal global data streaming in March and then running a multi-player on-line EEG-BCI game in September, 2013. We are currently working with the ARL Translational Neuroscience Branch to use our system in real-life personal stress monitoring and the UCSD Movement Disorder Center to conduct in-home Parkinson's disease patient monitoring experiments. We shall proceed to develop the necessary BCI ontology and introduce automatic semantic annotation and progressive model refinement capability to our system.
基于脑电图的脑机接口(BCI)在实际应用中面临着基本挑战。开发真正可穿戴的 BCI 系统,使其能够在动态现实环境中对用户的认知状态进行可靠的实时预测,这在技术上存在着几乎无法克服的困难。幸运的是,微型传感器、无线通信和分布式计算技术的最新进展为弥合这些差距提供了有希望的方法。在本文中,我们报告了使用包括多层雾计算和云计算、语义链接数据搜索以及自适应预测/分类模型在内的最先进技术来开发普及型在线 EEG-BCI 系统的尝试。为了验证我们的方法,我们通过使用无线干电极脑电图耳机和 MEMS 运动传感器作为前端设备、Android 手机作为个人用户界面、紧凑型个人计算机作为近场 Fog 服务器以及由台湾国家高性能计算中心(NCHC)托管的计算机集群作为远程 Cloud 服务器来实现一个试验系统。我们成功地在 2013 年 3 月进行了同步多模态全局数据流传输,然后在 9 月运行了一个多玩家在线 EEG-BCI 游戏。我们目前正在与 ARL 转化神经科学分部合作,使用我们的系统进行现实生活中的个人压力监测,以及与圣地亚哥加利福尼亚大学运动障碍中心合作,进行家庭帕金森病患者监测实验。我们将继续开发必要的 BCI 本体,并为我们的系统引入自动语义标注和渐进式模型细化功能。