Suppr超能文献

极端环境条件下 R1 的极端生物膜形成的发展和调控。

Development and Regulation of the Extreme Biofilm Formation of R1 under Extreme Environmental Conditions.

机构信息

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

出版信息

Int J Mol Sci. 2023 Dec 28;25(1):421. doi: 10.3390/ijms25010421.

Abstract

To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of , , and . Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of . The mutation of the gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of . Furthermore, transcripts from both the wild type and the mutant were compared, showing that the expression of (BON domain-containing protein 1) significantly decreased in the mutant during biofilm development. Further analysis revealed that the mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene . Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by to adapt to extreme environments.

摘要

为了在各种恶劣环境中生长,极端微生物已经发展出了非凡的策略,如生物膜的形成,这是一个极其复杂和渐进的过程。然而,极端生物膜形成背后的遗传元素和确切机制仍然是个谜。在这里,我们在极端环境条件下对 的体外生物膜形成能力进行了特征描述,发现极高浓度的 NaCl 或山梨醇可以诱导生物膜形成。同时,在不同的极端条件下,如过氧化氢胁迫、山梨醇胁迫和高强度紫外线辐射下,生物膜细胞的生存能力优于浮游细胞。 在四个不同生物膜发育阶段的转录组图谱进一步表明,只有 13 个匹配基因,涉及环境信息处理、碳水化合物代谢或应激反应,与 、 和 生物膜形成相关的基因具有序列同源性。总的来说,64%的差异表达基因的功能未知,这表明 的调控网络具有特异性。编码响应调节蛋白的 基因的突变强烈损害了生物膜形成能力,这表明 DrRRA 是生物膜形成的必要组成部分。此外,比较了野生型和 突变体的转录本,显示在生物膜发育过程中, (含 BON 结构域蛋白 1)的转录本在 突变体中显著减少。进一步分析表明, 突变体缺乏形成生物膜的能力,而 DrRRA 作为生物膜形成的促进剂,可以直接刺激生物膜相关基因的转录。总的来说,我们的工作强调了一种由响应调节蛋白 DrRRA 介导的控制极端生物膜形成的分子机制,为未来研究提供了指导,以探索 适应极端环境的新机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/832e/10778927/cf86642b53d2/ijms-25-00421-g001.jpg

相似文献

2
DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans.
Mol Microbiol. 2008 Mar;67(6):1211-22. doi: 10.1111/j.1365-2958.2008.06113.x. Epub 2008 Jan 15.
3
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase () Expression for Oxidative Stress Adaptation.
Appl Environ Microbiol. 2022 Jun 14;88(11):e0003822. doi: 10.1128/aem.00038-22. Epub 2022 May 16.
4
Proteomic insights into the functional basis for the response regulator DrRRA of Deinococcus radiodurans.
Int J Radiat Biol. 2016 May;92(5):273-80. doi: 10.3109/09553002.2016.1150618. Epub 2016 Mar 7.
5
The role of S-layer protein (SlpA) in biofilm-formation of Deinococcus radiodurans.
J Appl Microbiol. 2022 Aug;133(2):796-807. doi: 10.1111/jam.15613. Epub 2022 May 15.
6
The structural basis of the response regulator DrRRA from Deinococcus radiodurans.
Biochem Biophys Res Commun. 2012 Jan 27;417(4):1206-12. doi: 10.1016/j.bbrc.2011.12.110. Epub 2011 Dec 29.
7
iTRAQ-based proteomic analysis of Deinococcus radiodurans in response to C heavy ion irradiation.
BMC Microbiol. 2022 Nov 4;22(1):264. doi: 10.1186/s12866-022-02676-x.

引用本文的文献

1
An astrobiological perspective on microbial biofilms: their importance for habitability and production of detectable and lasting biosignatures.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0177824. doi: 10.1128/aem.01778-24. Epub 2025 Feb 10.
2
PD-1/PD-L1 axis: implications in immune regulation, cancer progression, and translational applications.
J Mol Med (Berl). 2024 Aug;102(8):987-1000. doi: 10.1007/s00109-024-02463-3. Epub 2024 Jun 27.

本文引用的文献

1
The biofilm matrix: multitasking in a shared space.
Nat Rev Microbiol. 2023 Feb;21(2):70-86. doi: 10.1038/s41579-022-00791-0. Epub 2022 Sep 20.
2
The biofilm life cycle: expanding the conceptual model of biofilm formation.
Nat Rev Microbiol. 2022 Oct;20(10):608-620. doi: 10.1038/s41579-022-00767-0. Epub 2022 Aug 3.
3
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase () Expression for Oxidative Stress Adaptation.
Appl Environ Microbiol. 2022 Jun 14;88(11):e0003822. doi: 10.1128/aem.00038-22. Epub 2022 May 16.
4
Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract.
Front Cell Infect Microbiol. 2021 Feb 2;10:624622. doi: 10.3389/fcimb.2020.624622. eCollection 2020.
5
Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism.
Mol Microbiol. 2021 Jun;115(6):1339-1356. doi: 10.1111/mmi.14684. Epub 2021 Jan 25.
6
Kinetic modelling of the uranium biosorption by Deinococcus radiodurans biofilm.
Chemosphere. 2021 Apr;269:128722. doi: 10.1016/j.chemosphere.2020.128722. Epub 2020 Nov 2.
7
Comparative genomics of wild-type and laboratory-evolved biofilm-overproducing strains.
Microb Genom. 2020 Dec;6(12). doi: 10.1099/mgen.0.000464. Epub 2020 Nov 4.
8
Regulation of (p)ppGpp and Its Homologs on Environmental Adaptation, Survival, and Pathogenicity of Streptococci.
Front Microbiol. 2020 Sep 25;11:1842. doi: 10.3389/fmicb.2020.01842. eCollection 2020.
9
Quercetin inhibits Pseudomonas aeruginosa biofilm formation via the vfr-mediated lasIR system.
Microb Pathog. 2020 Dec;149:104291. doi: 10.1016/j.micpath.2020.104291. Epub 2020 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验