Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary.
Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary.
Int J Mol Sci. 2024 Jan 4;25(1):664. doi: 10.3390/ijms25010664.
Targeted alpha-particle therapy using radionuclides with alpha emission is a rapidly developing area in modern cancer treatment. To selectively deliver alpha-emitting isotopes to tumors, targeting vectors, including monoclonal antibodies, peptides, small molecule inhibitors, or other biomolecules, are attached to them, which ensures specific binding to tumor-related antigens and cell surface receptors. Although earlier studies have already demonstrated the anti-tumor potential of alpha-emitting radium (Ra) isotopes-Radium-223 and Radium-224 (Ra)-in the treatment of skeletal metastases, their inability to complex with target-specific moieties hindered application beyond bone targeting. To exploit the therapeutic gains of Ra across a wider spectrum of cancers, nanoparticles have recently been embraced as carriers to ensure the linkage of Ra to target-affine vectors. Exemplified by prior findings, Ra was successfully bound to several nano/microparticles, including lanthanum phosphate, nanozeolites, barium sulfate, hydroxyapatite, calcium carbonate, gypsum, celestine, or liposomes. Despite the lengthened tumor retention and the related improvement in the radiotherapeutic effect of Ra coupled to nanoparticles, the in vivo assessment of the radiolabeled nanoprobes is a prerequisite prior to clinical usage. For this purpose, experimental xenotransplant models of different cancers provide a well-suited scenario. Herein, we summarize the latest achievements with Ra-doped nanoparticles and related advances in targeted alpha radiotherapy.
靶向 alpha 粒子治疗使用具有 alpha 发射的放射性核素是现代癌症治疗中一个迅速发展的领域。为了将 alpha 发射同位素选择性递送至肿瘤,靶向载体,包括单克隆抗体、肽、小分子抑制剂或其他生物分子,被连接到它们上,这确保了与肿瘤相关抗原和细胞表面受体的特异性结合。尽管早期的研究已经证明了 alpha 发射镭(Ra)同位素-镭-223 和镭-224(Ra)在治疗骨骼转移中的抗肿瘤潜力,但它们无法与靶特异性部分复合,限制了它们在骨靶向之外的应用。为了在更广泛的癌症范围内利用 Ra 的治疗增益,最近已经将纳米颗粒作为载体来确保 Ra 与靶向亲和载体的连接。以前的研究结果为例,Ra 已成功结合到几种纳米/微粒上,包括磷酸镧、纳米沸石、硫酸钡、羟基磷灰石、碳酸钙、石膏、天青石或脂质体。尽管与纳米颗粒结合的 Ra 的肿瘤保留时间延长,并且相关的放射治疗效果得到改善,但在临床应用之前,对放射性标记的纳米探针进行体内评估是前提条件。为此,不同癌症的实验性异种移植模型提供了一个很好的场景。在此,我们总结了 Ra 掺杂纳米颗粒的最新成果以及靶向 alpha 放射治疗的相关进展。