文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Formulation and Biodegradation of Surface-Supported Biopolymer-Based Microgels Formed via Hard Templating onto Vaterite CaCO Crystals.

作者信息

Mammen Mariam, Hogg Cain, Craske Dominic, Volodkin Dmitry

机构信息

Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

出版信息

Materials (Basel). 2023 Dec 25;17(1):103. doi: 10.3390/ma17010103.


DOI:10.3390/ma17010103
PMID:38203957
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10779910/
Abstract

In recent decades, there has been increased attention to the role of layer-by-layer assembled bio-polymer 3D structures (capsules, beads, and microgels) for biomedical applications. Such free-standing multilayer structures are formed via hard templating onto sacrificial cores such as vaterite CaCO crystals. Immobilization of these structures onto solid surfaces (e.g., implants and catheters) opens the way for the formulation of advanced bio-coating with a patterned surface. However, the immobilization step is challenging. Multiple approaches based mainly on covalent binding have been developed to localize these multilayer 3D structures at the surface. This work reports a novel strategy to formulate multilayer surface-supported microgels (ss-MG) directly on the surface via hard templating onto ss-CaCO pre-grown onto the surface via the direct mixing of NaCO and CaCl precursor solutions. ss-MGs were fabricated using biopolymers: polylysine (PLL) as polycation and three polyanions-hyaluronic acid (HA), heparin sulfate (HS), and alginate (ALG). ss-MG biodegradation was examined by employing the enzyme trypsin. Our studies indicate that the adhesion of the ss-MG to the surface and its formation yield directly correlate with the mobility of biopolymers in the ss-MG, which decreases in the sequence of ALG > HA > HS-based ss-MGs. The adhesion of HS-based ss-MGs is only possible via heating during their formation. Dextran-loading increases ss-MG formation yield while reducing ss-MG shrinking. ss-MGs with higher polymer mobility possess slower biodegradation rates, which is likely due to diffusion limitations for the enzyme in more compact annealed ss-MGs. These findings provide valuable insights into the mechanisms underlying the formation and biodegradation of surface-supported biopolymer structures.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/bf448ff1207b/materials-17-00103-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/d9ec75df22fb/materials-17-00103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/8fa0aba9c8ae/materials-17-00103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/cf8ad6923e8f/materials-17-00103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/bef1ea1b04ac/materials-17-00103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/6298fb9d2602/materials-17-00103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/65afff3ef625/materials-17-00103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/fb75fcd5316c/materials-17-00103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/64839fde2530/materials-17-00103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/a232d3e664ae/materials-17-00103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/051c58587b9c/materials-17-00103-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/eddc5e69e4ba/materials-17-00103-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/bf448ff1207b/materials-17-00103-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/d9ec75df22fb/materials-17-00103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/8fa0aba9c8ae/materials-17-00103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/cf8ad6923e8f/materials-17-00103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/bef1ea1b04ac/materials-17-00103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/6298fb9d2602/materials-17-00103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/65afff3ef625/materials-17-00103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/fb75fcd5316c/materials-17-00103-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/64839fde2530/materials-17-00103-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/a232d3e664ae/materials-17-00103-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/051c58587b9c/materials-17-00103-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/eddc5e69e4ba/materials-17-00103-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a996/10779910/bf448ff1207b/materials-17-00103-g012.jpg

相似文献

[1]
Formulation and Biodegradation of Surface-Supported Biopolymer-Based Microgels Formed via Hard Templating onto Vaterite CaCO Crystals.

Materials (Basel). 2023-12-25

[2]
Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO as Templates.

ACS Appl Mater Interfaces. 2021-1-20

[3]
Spontaneous shrinkage drives macromolecule encapsulation into layer-by-layer assembled biopolymer microgels.

J Colloid Interface Sci. 2023-4

[4]
Porous Alginate Scaffolds Assembled Using Vaterite CaCO Crystals.

Micromachines (Basel). 2019-5-29

[5]
Encapsulation of Low-Molecular-Weight Drugs into Polymer Multilayer Capsules Templated on Vaterite CaCO Crystals.

Micromachines (Basel). 2020-7-24

[6]
Controlling the Vaterite CaCO3 Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating.

Langmuir. 2016-4-18

[7]
Self-Assembled Mucin-Containing Microcarriers via Hard Templating on CaCO₃ Crystals.

Micromachines (Basel). 2018-6-19

[8]
Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance.

ACS Appl Mater Interfaces. 2015-9-30

[9]
formation of tetraphenylethylene nano-structures on microgels inside living cells reduction-responsive self-assembly.

Nanoscale. 2021-1-8

[10]
Protein-Containing Multilayer Capsules by Templating on Mesoporous CaCO3 Particles: POST- and PRE-Loading Approaches.

Macromol Biosci. 2016-1

本文引用的文献

[1]
Hierarchy of hybrid materials. Part-II: The place of organics--inorganics in it, their composition and applications.

Front Chem. 2023-1-25

[2]
A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules.

Chem Commun (Camb). 2023-1-19

[3]
Encapsulated vaterite-calcite CaCO particles loaded with Mg and Cu ions with sustained release promoting osteogenesis and angiogenesis.

Front Bioeng Biotechnol. 2022-8-11

[4]
Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery.

Biomater Sci. 2022-9-13

[5]
Layer-by-layer assembly methods and their biomedical applications.

Biomater Sci. 2022-7-26

[6]
Recent Developments in Layer-by-Layer Technique for Drug Delivery Applications.

ACS Appl Bio Mater. 2019-12-16

[7]
Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives.

Nanomaterials (Basel). 2021-9-26

[8]
Mesoporous One-Component Gold Microshells as 3D SERS Substrates.

Biosensors (Basel). 2021-10-9

[9]
Calcium carbonate nano- and microparticles: synthesis methods and biological applications.

3 Biotech. 2021-11

[10]
Which Biopolymers Are Better for the Fabrication of Multilayer Capsules? A Comparative Study Using Vaterite CaCO as Templates.

ACS Appl Mater Interfaces. 2021-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索