Suppr超能文献

基于CT扫描图像的新型冠状病毒肺炎病例研究中病毒性肺炎影像特征的检测方法

Detection method of viral pneumonia imaging features based on CT scan images in COVID-19 case study.

作者信息

Hermawati Fajar Astuti, Trilaksono Bambang Riyanto, Nugroho Anto Satriyo, Imah Elly Matul, Kamelia Telly, Mengko Tati L E R, Handayani Astri, Sugijono Stefanus Eric, Zulkarnaien Benny, Afifi Rahmi, Kusumawardhana Dimas Bintang

机构信息

Department of Informatics, Universitas 17 Agustus 1945, Surabaya, Indonesia.

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia.

出版信息

MethodsX. 2023 Dec 19;12:102507. doi: 10.1016/j.mex.2023.102507. eCollection 2024 Jun.

Abstract

This study aims to automatically analyze and extract abnormalities in the lung field due to Coronavirus Disease 2019 (COVID-19). Types of abnormalities that can be detected are Ground Glass Opacity (GGO) and consolidation. The proposed method can also identify the location of the abnormality in the lung field, that is, the central and peripheral lung area. The location and type of these abnormalities affect the severity and confidence level of a patient suffering from COVID-19. The detection results using the proposed method are compared with the results of manual detection by radiologists. From the experimental results, the proposed system can provide an average error of 0.059 for the severity score and 0.069 for the confidence level. This method has been implemented in a web-based application for general users.•A method to detect the appearance of viral pneumonia imaging features, namely Ground Glass Opacity (GGO) and consolidation on the chest Computed Tomography (CT) scan images.•This method can separate the lung field to the right lung and the left lung, and it also can identify the detected imaging feature's location in the central or peripheral of the lung field.•Severity level and confidence level of the patient's suffering are measured.

摘要

本研究旨在自动分析并提取2019冠状病毒病(COVID-19)所致的肺野异常。可检测到的异常类型包括磨玻璃影(GGO)和实变。所提出的方法还能够识别肺野中异常的位置,即肺中央和外周区域。这些异常的位置和类型会影响COVID-19患者的病情严重程度和置信度。将使用所提出方法的检测结果与放射科医生手动检测的结果进行比较。从实验结果来看,所提出的系统在病情严重程度评分方面的平均误差为0.059,在置信度方面的平均误差为0.069。该方法已在面向普通用户的基于网络的应用程序中实现。

•一种检测病毒性肺炎影像特征(即胸部计算机断层扫描(CT)图像上的磨玻璃影(GGO)和实变)出现情况的方法。

•该方法可将肺野分为右肺和左肺,还能识别检测到的影像特征在肺野中央或外周的位置。

•对患者病情的严重程度和置信度进行测量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55a3/10776984/a43da50609d0/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验