Suppr超能文献

超声辅助提取柿果皮中的植物化学成分:结合人工神经网络建模与遗传算法优化

Ultrasound assisted phytochemical extraction of persimmon fruit peel: Integrating ANN modeling and genetic algorithm optimization.

作者信息

Giri Souvik, Bhagya Raj Gvs, Kovács Béla, Ayaz Mukarram Shaikh

机构信息

Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.

Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India.

出版信息

Ultrason Sonochem. 2024 Jan;102:106759. doi: 10.1016/j.ultsonch.2024.106759. Epub 2024 Jan 6.

Abstract

In the present study, ultrasound assisted extraction (UAE) of phytochemicals from persimmon fruit peel (PFP) was modeled using an artificial neural network (ANN) and optimized by integrating with genetic algorithm (GA). The range of process parameters selected for conducting the experiments was ultrasonication power (X) 150---350 W, extraction temperatures (X) 30---70 °C, solid to solvent ratio (X) 1:15---1:35 g/ml, and ethanol concentration (X) 40---80 %. The range of responses total phenolic content (Y), antioxidant activity (Y), total beta carotenoid (Y) and total flavonoid content (Y) at various independent variables combinations were found to be 7.72---24.62 mg GAE/g d.w., 51.44---85.58 %DPPH inhibition, 24.78---56.56 µg/g d.w. and 0.29---1.97 mg QE/g d.w. respectively. The modelling utilised an ANN architecture with a configuration of 4-12-4. The training process employed the Levenberg-Marquardt method, whereas the activation function chosen for the layers was the log sigmoid. The optimum condition predicted by the hybrid ANN-GA model for the independent variables, X, X, X and X was found to be 230.18 W, 50.66 °C, 28.27 g/ml, and 62.75 % respectively. The extraction process was carried out for 25 min, with 5-minute intervals, at various temperatures between 30 and 60 °C, to investigate the kinetic and thermodynamic characteristics of the process, under the optimal conditions of X, X and X. The UAE of phytochemicals from persimmon peel followed pseudo second order kinetic model and the extraction process was endothermic in nature.

摘要

在本研究中,采用人工神经网络(ANN)对超声辅助提取(UAE)柿子果皮(PFP)中的植物化学物质进行建模,并通过与遗传算法(GA)相结合进行优化。进行实验所选的工艺参数范围为超声功率(X)150 - 350W、提取温度(X)30 - 70°C、固液比(X)1:15 - 1:35g/ml以及乙醇浓度(X)40 - 80%。发现在各种自变量组合下,响应值总酚含量(Y)、抗氧化活性(Y)、总β - 胡萝卜素(Y)和总黄酮含量(Y)的范围分别为7.72 - 24.62mg GAE/g干重、51.44 - 85.58%DPPH抑制率、24.78 - 56.56μg/g干重和0.29 - 1.97mg QE/g干重。建模使用了配置为4 - 12 - 4的人工神经网络结构。训练过程采用Levenberg - Marquardt方法,而各层选择的激活函数为对数Sigmoid函数。人工神经网络 - 遗传算法混合模型预测的自变量X、X、X和X的最佳条件分别为230.18W、50.66°C、28.27g/ml和62.75%。在X、X和X的最佳条件下,在30至60°C的不同温度下,以5分钟为间隔进行25分钟的提取过程,以研究该过程的动力学和热力学特性。从柿子皮中超声辅助提取植物化学物质遵循伪二级动力学模型,并且提取过程本质上是吸热的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c398/10825330/52f42e42831f/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验