Suppr超能文献

比较不同牙周炎阶段患者的放射学检测的深度学习方法。

Comparison of deep learning methods for the radiographic detection of patients with different periodontitis stages.

机构信息

Faculty of Dentistry, Department of Periodontology, Kutahya Health Sciences University, Kutahya, 43100, Turkey.

Faculty of Technology, Department of Software Engineering, Sivas Cumhuriyet University, Sivas, 58140, Turkey.

出版信息

Dentomaxillofac Radiol. 2024 Jan 11;53(1):32-42. doi: 10.1093/dmfr/twad003.

Abstract

OBJECTIVES

The objective of this study is to assess the accuracy of computer-assisted periodontal classification bone loss staging using deep learning (DL) methods on panoramic radiographs and to compare the performance of various models and layers.

METHODS

Panoramic radiographs were diagnosed and classified into 3 groups, namely "healthy," "Stage1/2," and "Stage3/4," and stored in separate folders. The feature extraction stage involved transferring and retraining the feature extraction layers and weights from 3 models, namely ResNet50, DenseNet121, and InceptionV3, which were proposed for classifying the ImageNet dataset, to 3 DL models designed for classifying periodontal bone loss. The features obtained from global average pooling (GAP), global max pooling (GMP), or flatten layers (FL) of convolutional neural network (CNN) models were used as input to the 8 different machine learning (ML) models. In addition, the features obtained from the GAP, GMP, or FL of the DL models were reduced using the minimum redundancy maximum relevance (mRMR) method and then classified again with 8 ML models.

RESULTS

A total of 2533 panoramic radiographs, including 721 in the healthy group, 842 in the Stage1/2 group, and 970 in the Stage3/4 group, were included in the dataset. The average performance values of DenseNet121 + GAP-based and DenseNet121 + GAP + mRMR-based ML techniques on 10 subdatasets and ML models developed using 2 feature selection techniques outperformed CNN models.

CONCLUSIONS

The new DenseNet121 + GAP + mRMR-based support vector machine model developed in this study achieved higher performance in periodontal bone loss classification compared to other models in the literature by detecting effective features from raw images without the need for manual selection.

摘要

目的

本研究旨在评估基于深度学习(DL)方法在全景放射片中辅助牙周分类骨丧失分期的准确性,并比较不同模型和层的性能。

方法

将全景放射片诊断和分类为 3 组,即“健康”、“Stage1/2”和“Stage3/4”,并分别存储在单独的文件夹中。特征提取阶段涉及从 3 个模型(ResNet50、DenseNet121 和 InceptionV3)中转录和重新训练特征提取层和权重,这 3 个模型是为分类 ImageNet 数据集而提出的,将其应用于 3 个专为分类牙周骨丧失而设计的 DL 模型。从卷积神经网络(CNN)模型的全局平均池化(GAP)、全局最大池化(GMP)或展平层(FL)获得的特征被用作 8 个不同机器学习(ML)模型的输入。此外,使用最小冗余最大相关性(mRMR)方法减少来自 DL 模型的 GAP、GMP 或 FL 的特征,然后再用 8 个 ML 模型进行分类。

结果

该数据集共包括 2533 张全景放射片,其中健康组 721 张,Stage1/2 组 842 张,Stage3/4 组 970 张。在 10 个子数据集和使用 2 种特征选择技术开发的 ML 模型上,DenseNet121+GAP 为基础和 DenseNet121+GAP+mRMR 为基础的 ML 技术的平均性能值优于 CNN 模型。

结论

与文献中的其他模型相比,本研究中开发的基于新的 DenseNet121+GAP+mRMR 的支持向量机模型通过从原始图像中检测有效特征而无需手动选择,在牙周骨丧失分类中实现了更高的性能。

相似文献

引用本文的文献

本文引用的文献

1
Clinical periodontal diagnosis.临床牙周诊断。
Periodontol 2000. 2023 Jul 14. doi: 10.1111/prd.12487.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验